
Received October 26, 2020, accepted November 23, 2020, date of publication December 15, 2020,
date of current version December 31, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3045071

Resistive Crossbar-Aware Neural Network Design
and Optimization
MUHAMMAD ABDULLAH HANIF 1,∗, (Graduate Student Member, IEEE),
ADITYA MANGLIK1,2,∗, (Student Member, IEEE),
AND MUHAMMAD SHAFIQUE 3, (Senior Member, IEEE)
1Faculty of Informatics, Technische Universität Wien (TU Wien), 1040 Vienna, Austria
2Birla Institute of Technology & Science, Pilani, Pilani 333031, India
3Division of Engineering, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates

Corresponding author: Muhammad Abdullah Hanif (muhammad.hanif@tuwien.ac.at)

∗Muhammad Abdullah Hanif and Aditya Manglik contributed equally to this work.

ABSTRACT Recent research in Non-Volatile Memory (NVM) and Processing-in-Memory (PIM)
technologies has proposed low energy PIM-based system designs for high-performance neural network
inference. Simultaneously, there is a tremendous thrust in neural network architecture research, primarily
targeted towards task-specific accuracy improvements. Despite the enormous potential of a PIM-based
compute paradigm, most hardware proposals adopt a one-accelerator-fits-all-networks approach, bleeding
performance across all verticals. The overarching goal for this work is to improve the throughput and power
efficiency of convolutional neural networks on resistive crossbar-based microarchitectures. To this end,
we demonstrate why, how, and where to prune contemporary neural networks for superior exploitation of the
crossbar’s underlying parallelism model. Further, we present the first crossbar-aware neural network design
principles for discovering novel crossbar-amenable network architectures. Our third contribution includes
simple yet efficient hardware optimizations to boost energy & area efficiency for modern deep neural
networks and ensembles. Finally, we combine these ideas towards our fourth contribution, CrossNet, a novel
network architecture family which improves computational efficiency by 19.06× and power efficiency by
4.16× over state-of-the-art designs.

INDEX TERMS Processing-in-memory, memristor, crossbar, resistive RAM, ReRAM, neural network,
pruning, ensemble, DNN, deep neural networks, CNN, convolutional neural networks, CrossNet,
neuromorphic computing, in-memory computing, efficiency, performance, energy consumption, design,
principles, optimization.

I. INTRODUCTION
Neural networks have achieved breakthroughs in a wide
range of hard computation problems, from image recognition
to speech translation [1]. State-of-the-art networks rely on
massive parameter count (≥ 108) and manually designed
architectures (with 101 − 103 layers) to surpass prior
benchmarks and beat human-level performance [2], [3].
However, these algorithms demand enormous memory (≥
109 Byte), and operational cost (≥ 109 operations for each
input), scaling commensurately with ever-growing datasets
and network depth [4]–[7].

To quantify the hardware requirements of modern deep
learning workloads, we analyzed the results of the prized

The associate editor coordinating the review of this manuscript and

approving it for publication was Javed Iqbal .

ILSVRC Image Classification and Segmentation challenge
from 2012 till date.1 Contrary to popular perception,
neural network ensembles (a cluster of networks) dominated
the challenge, consistently outperforming singular model
submissions. For example, in the 2014 winning submission,
7 models were combined as an ensemble, improving the
error rate by 3.45% over a single model. Interestingly,
the runner-up VGGNet (8.43% error, 103 million param-
eters [8]) performed better than the GoogleNet [9] model
(10.07% error, 6.7 million parameters) in the single-model
comparison. Further, for the same batch size and infer-
ence hardware, GoogleNet_v1 performed 3.29× faster than
VGG-16 (128.16 ms). From these observations, we deduce:

1https://image-net.org/challenges/LSVRC/

229066 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME xx, 2020

https://orcid.org/0000-0001-9841-6132
https://orcid.org/0000-0002-2607-8135
https://orcid.org/0000-0001-7747-8801

M. A. Hanif et al.: Resistive Crossbar-Aware Neural Network Design and Optimization

1) An effective ensembling strategy was the winning
trick for the GoogleNet submission. Singular models
fared poorly in almost all aspects of the challenge.

2) Computation costs can be improved by aligning the
network design space with the underlying
hardware’s parallelism model. Even though the
single VGGNet model offers better accuracy,
the performance-per-parameter for GoogleNet is
higher by two orders of magnitude (13.55 accuracy-
points/million-parameters against 0.65 accuracy-
points/million-parameters).

The key take-away from these deductions is that it is possi-
ble to achieve both higher accuracies and lower computation
costs by considering the target hardware’s parallelism model
along with the network architecture search space. Applying
these lessons in practice, we analyze and present the first
convolutional neural network design optimizations in the
context of resistive crossbar microarchitectures.

Recently there has been a surge in the research commu-
nity’s interest towards specialized accelerator-based archi-
tectures [10]–[13] and innovative compute-paradigms (such
as Processing-in-Memory (PIM)). Memristor-based crossbar
microarchitectures have been demonstrated to be more
efficient than GPUs by up-to three orders of magnitude [14],
[15]. Large resistive crossbars2 (for example, 1024 × 1024
or more) offer lower static power costs due to a high
number of operations per cycle. However, these designs
suffer from practical challenges such as high ADC precision
requirement, wire IR drop and large write currents [16].
On the contrary, using small crossbars (for example,
64 × 64 or less) for computing large dot products poses the
spillover problem. This is tackled by breaking up the input
vectors across different crossbars and combining results of a
single dot product via Shift-&-Add units. As an illustrative
example, unrolling and mapping 64 5 × 5 × 3 filters on
64×64 crossbars. This requires two crossbar units to perform
the MAC operation correctly per input vector. Figure 1
demonstrates how 82.81% space is wasted in the second unit
(figure not to scale). Extending this observation across an
ever-increasing number of layers required by modern deep
networks, we observe tremendous wastage of expensive chip
area. This may be attributed to the following observations:

1) Multiple crossbars must co-ordinate to calculate a
single output. This is inefficient as each crossbar
can produce independent results in the same cycle.
Such synchronization barriers impede throughput and
degrade effective parallelism. (comparing Figure 1
against Figure 2)

2) High-precision global Shift & Add units are needed to
accumulate the result from multiple crossbars, which
increases peripheral area & energy costs.

3) When we consider mapping modern network
architectures with split branches (InceptionNet [9],
TreeNet [17]) and skip connections (DenseNet [18],

2detailed background in Section II.D

FIGURE 1. A small subset of weights of a set of filters occupying only a
part of a crossbar (spillover effect). The remaining part of the crossbar
cannot be used in parallel to ensure accurate MVM operation. Different
colors show different layers and different shades correspond to different
filters in the figure.

FIGURE 2. Algorithm 1 eliminates the excess columns, while Algorithm 2
eliminates spillover. This improves occupancy ratio from 0.44 to 1.0.

ResNet [2]), there is no work in the direction of
exploiting the crossbar architecture’s underlying
parallelism towards eliminating duplicate memory
accesses for these shared activations.

These problems motivate us towards aligning the underlying
hardware’s parallelism model with the network data flow.
We believe this is the key to practical improvements in
computational efficiency.

Our Novel Contributions: This paper serves to demon-
strate themerits of a hardware-software co-design perspective
over the one-size-fits-all approach by both hardware archi-
tects and network designers. To this end, we present the
following novel contributions (see Figure 4):

1) We demonstrate why, how, and where to prune
contemporary neural network architectures for better
exploitation of the crossbar’s underlying parallelism
model using novel pruning algorithms. (Section III)

2) We present innovative hardware optimizations for
crossbar peripherals to improve the energy and area
efficiency for previously neglected heterogeneous con-
volution filters and ensembles. (Section IV)

VOLUME xx, 2020 229067

M. A. Hanif et al.: Resistive Crossbar-Aware Neural Network Design and Optimization

FIGURE 3. Paper organization.

FIGURE 4. System overview where our contributions are highlighted in
blue.

3) We present the first resistive crossbar-aware design
principles for network architecture search. These
principles are targeted towards practical performance
improvements without specialized hardware sup-
port [19]. (Section V)

4) We utilize these principles to develop a new family of
neural networks, called CrossNet, which improves on
the best-in-class network’s computational efficiency by
19.06× and power efficiency by 4.16×. (Section VI)

5) We develop case-studies for these ideas in the context
of latest developments in the neural network archi-
tecture research and quantify their efficacy across a
diverse test-bench. (Section VII)

To comprehensively evaluate the potential of each idea,
the article is organized in independent sections with key take-
aways listed at the end to ease the reader’s task. Please refer
to Figure 3 for the organization of the upcoming sections.

FIGURE 5. Illustration of a deep convolutional neural network.

Figure 4 demonstrates one potential flow for combining the
presented ideas.

II. BACKGROUND
In this section, we present the necessary background required
to understand the concepts presented in the technical sections
of the paper. This section also introduces the key terms
and variables. Section II-A introduces convolutional neural
networks and highlights some of the key challenges faced
in deploying high-accuracy DNNs in resource-constrained
systems. Section II-B discusses DNN pruning and its two
major categories. Section II-C presents the concept of DNN
ensemble for high accuracy scenarios. Section II-D gives
an overview of resistive memory crossbars and their use
for DNN inference. Finally, Section II-E highlights the key
related works and the motivation behind this work.

A. CONVOLUTIONAL NEURAL NETWORKS
A typical convolutional network is composed of several
convolutional (CONV) layers and Fully Connected (FC)
layers; see Figure 5. A convolutional layer (see Figure 6) can
be represented by the equation:

Aoutk (x, y) = σ (
Ni−1∑
j=0

Kx−1∑
a=0

Ky−1∑
b=0

Ainj (x + a, y+b) ∗ Kk (j, a, b))

(1)

229068 VOLUME xx, 2020

M. A. Hanif et al.: Resistive Crossbar-Aware Neural Network Design and Optimization

FIGURE 6. Illustration of a convolutional layer.

FIGURE 7. Models like Megatron [3] are challenging to train and deploy
even in cloud clusters with theoretically infinite scaling capacities.

Kk denotes the k th tensor of dimensions Kx × Ky × Ni,
Ainj denotes the jth input feature map, and j, a, b represent
the convolution operation indices. Equation 1 has a space
and time complexity of O(N 3). Comparing data and network
sizes (1.5 MB for 224 × 224 color image and 240 MB
for AlexNet weights) with modern cache capacities (12 MB
L3, Intel Core i7 8700K), we observe that the computation
is bottlenecked by memory accesses. High costs of data
movement [20], high degree polynomial run-time and space
complexity restricts deep learning to cloud-based services,
entailing enormous communication costs amid growing data
privacy concerns [21], [22]. Recent language models such
as BERT-L [23], Megatron [3], and GPT-3 [24] (Figure 7)
have saturated the limits of available GPU hardware, and yet
promise significant growth in network size.

For decreasing the service latency, it is imperative to
optimize or parallelize the computation load. Fortunately,
the main operation in deployment use-case, network infer-
ence, is embarrassingly parallel within the context of a layer
and for each input cycle [25]. DaDianNao [11] exploits this
observation for context-switch based per-layer processing.

B. PRUNING
Sparsifying networks via pruning is a well-known technique
used to decrease the computation load (see Figure 8), usually
at the cost of accuracy [26]–[29]. Multiplying dense matrices
(activations maps) with sparse tensors (pruned network),
also known as sparse-MVM, needs significant effort in

FIGURE 8. Structured vs. unstructured pruning.

FIGURE 9. Neural network ensemble.

decoding the input sparse matrix representations [30] and
encoding the outputs. This overhead nullifies any significant
latency advantages obtained from sparse-MVM over GEMV.
Consequently, unstructured sparsity [19], [31], [32] fails to
deliver practical latency improvements without specialized
hardware support [13]. For example, [33] observed that
pruning 89% of AlexNet weights [19] counter-intuitively
increased the CPU execution time by 25%. This observation
motivates us towards reducing the model size without
sacrificing data locality.

Structured sparsity clusters weight pruning by vectors,
filters, and layers [34], [35]. Spatial locality is preserved at
the cost of lower pruning flexibility & reduced compression
ratios [36], [37]. It retains the dense matrix multiplication
structure, which translates to practical reductions in process-
ing time [33], [38].

C. ENSEMBLES
Neural network ensembles (see Figure 9) [39] breakdown the
complex decision boundary into smaller sub-problems (i.e.,
divide and conquer paradigm). They were among the earliest
innovations used to achieve breakthroughs in human-level
performance for computer vision challenges [40], [41].
Primary advantages include smoothening the decision bound-
ary, eliminating outliers, and advancing correct classification
rates beyond individual capacity [17], [42], [43].
A Committee Machine averages the output of several mem-

bers, whereas an ensemble (or a mixture-of-experts) utilizes a
gating network that probabilistically weighs the outputs from
several specialized networks towards the final result [44].
Figure 10 demonstrates ensembling method performance
across varying datasets and network architectures. The work
in [17] observed that random weight initialization provides

VOLUME xx, 2020 229069

M. A. Hanif et al.: Resistive Crossbar-Aware Neural Network Design and Optimization

FIGURE 10. Circle sizes represent deviation values in system accuracy
measurement. ILSVRC-AlexNet-x5-Gating indicates 5 AlexNet architecture
networks trained on ILSVRC dataset, and final result computed via a
gating network.

maximum performance improvements (4.58%) as compared
to bagging (0.125%) and combination of bagging + random
initialization (1.41%).

Ensembles are heavily favored in high-accuracy scenarios
(for example, medical imaging analysis), where single
networks cannot achieve the desired reliability, accuracy, and
fault tolerance [45]–[49].

D. RESISTIVE MEMORY CROSSBARS
Considering the challenges in DRAM scaling [50], mul-
tiple memory technologies are being explored, including
PCM, STT-RAM, ReRAM, etc. [51]–[53]. Among the
Non-Volatile Memory candidates, memristor-based Resis-
tive RAM (ReRAM) offers high endurance (up to 1010

cycles), fast switching and low read/write energy [54]–[56].
High-density crossbar microarchitectures with memris-
tor substrate have demonstrated natural amenability for
high-throuhgput GEMV multiplication [57], [58]. Figure 1
illustrates the process of unrolling convolution filters as
they are mapped on crossbars. The activations are delivered
via DAC on wordlines and summed currents obtained on
the bitlines (see Figure 11). The final results are digitized
via ADC and a network of Shift-&-Add units. Memristive
devices can be built from a wide variety of substrates
and device isolation/access mechanisms [59]–[63]. However,
the strategies and algorithms presented in this paper are

FIGURE 11. (a) Working principle of resistive crossbars. (b) Crossbar
architecture.

generalized for resistive crossbar microarchitecture, and
agnostic to the underlying device-level specifications.

E. RELATED WORK AND MOTIVATION
DaDianNao [11] is a notable CMOS-based neural network
accelerator design among others [64]–[68]. SCNN [12] and
Cnvlutin [69] propose sparse neural network accelerators,
targeting unstructured sparsity and dynamic activation-zero
eliminations. State-of-the-art NVM-based designs, including
ISAAC [15] and PRIME [70], improve throughput for a
single network’s inference cycles, while PipeLayer [71] and
TIME [72] accelerate network training process. ReCom [73]
and SNrram [74] present NVM based accelerators focusing
on unstructured sparsity. TraNNsformer [75] proposes a
spectral clustering scheme to mitigate the fragmentation
challenge in unstructured pruning but focuses only on
Fully Connected layers. Other proposals exploiting cross-
bar microarchitectures include [76]–[78]. Previous works
[19], [33] have shown that most networks are significantly
over-parameterized and may be pruned safely without sacri-
ficing accuracy. However, no previous paper has focused on
developing an understanding of the vast pruning search space,
especially towards aligning existing network designs with
the resistive crossbar’s parallelism model. Despite significant
literature on neural network design techniques [79], [80],
none of the previous works have explored developing these
ideas in the context of resistive crossbar’s parallelism model.
Further, previous proposals have overlooked massive deploy-
ment costs of neural network ensembles, which reduces the
practicability and industrial viability of their proposition.
These problems stem from a one-design-fits-all approach,
ignoring practical concerns for the sake of generalization.
To the best of author’s knowledge, there is no prior work
in the direction of guiding network architecture search to
improve data-flow on crossbar hardware. For instance, none
of the above works discuss how to exploit pruning to improve
power efficiency on resistive crossbars, nor do they consider

229070 VOLUME xx, 2020

M. A. Hanif et al.: Resistive Crossbar-Aware Neural Network Design and Optimization

FIGURE 12. Examples of mapping of sparse neural networks in a crossbar. Blue, green and grey cells represent sparse tensors with the empty
cells shown in red. Left-to-Right: pruning increases from connection-based, vector-based to filter-based.

deploying ensembles on their hardware for a realistic test-
bench.

III. ALIGNING THE DATA-FLOW WITH UNDERLYING
HARDWARE PARALLELISM
This section demonstrates how a network must be pruned to
improve alignment with the crossbar’s underlying parallelism
model to obtain a significant reduction in the number of
crossbars needed to map a DNN. Sections III-A and III-B
highlight the key challenges and opportunities in using
pruning to improve the efficiency of DNN inference on
crossbar-based hardware. Based on the highlighted chal-
lenges and opportunities, Section III-C presents our pruning
algorithms. Section III-D defines a method for choosing the
appropriate pruning algorithm, followed by key takeaways in
Section III-E.

A. SPARSE NETWORKS IN CROSSBAR
Figure 12 demonstrates convolutional tensors mapped on
a group of crossbars after applying different pruning
techniques. Starting from left, the first crossbar set rep-
resents mapping for a layer with non-structural pruning
of connections [19]. The zeroed-out weights (highlighted
in red verticals) have no impact on the final result, nor
do they improve the crossbar area efficiency (zero-weight
values do not contribute anything to the output). Due to the
non-uniform nature of this sparsity granularity, precision of
the final result cannot be determined in advance. This forces
full-precision processing by peripherals to accommodate
for the worst-case scenario, preventing clock-gating based
reductions in energy or latency. Although this granularity
achieves the highest compression ratios for fully connected
layers [31], the insignificant reduction in storage footprint
when mapped on crossbars restraints practical improvements
in area and energy efficiency.

The middle crossbar set exhibits a vector-based weight
pruning strategy [81], with contiguous blocks of zeroed-out
weights. If such sparse blocks are spread out across different
locations in the layer (illustrated in upper-left, upper-right and
bottom-left crossbars), this technique offers no improvement
over the previous case. However, if all filters enforce sparse
blocks in the same location for a given layer (e.g. bottom-right

crossbar), the corresponding unrolled tensor can eliminate
the zeroed-out connections and directly reduce the storage
requirements (Figure 2). Given the static computation graph
for neural networks is known at compile tile, off-chipmemory
accesses for the irrelevant sections of activation maps can be
removed from the data fetching queue. Hence, aligning the
pruning process for all filters collectively at the block level
allows for improving the area and energy efficiency without
sacrificing accuracy.

The third (right-most) crossbar set in Figure 12 depicts
layers mapped after pruning entire filters [82], [83]. This
eliminates complete columns from the crossbar mapping.
Reducing the number of columns lowers the number of
ADC sampling cycles needed to process results from all
targets in a crossbar, which may be used to lower the ADC
sampling rate (decreasing power proportionately) [84], [85].
This further generates space to map more filters in the given
crossbar (from the same or different layers). In the case of
different layers, it is important to note that the concurrently
mapped filters should ideally have common input feature
maps (similar to filters from the same layer). In the case
of different inputs for different columns, the corresponding
activation maps may be time-multiplexed for correct target
computation. Even in this scenario, filter pruning allows for
a denser mapping, trading throughput with storage efficiency
(especially on embedded devices or resource-constrained
platforms).
These observations motivate us to exploit vector-based and

filter-based pruning algorithms for aligning the data-flow
with the underlying hardware’s parallelism.

B. PRUNING SENSITIVITES IN NETWORK LAYERS
Figure 13 displays accuracy loss of different layers in the
VGG-16 network upon pruning. Shallow layers (conv1,
conv2, conv3) are noticeably sensitive to pruning but have
fewer filters due to large and thin activation maps. Deeper
layers tend to be significantly overparameterized and may
be pruned without significant accuracy drop penalties.
This can be understood as follows: As we go deeper,
the network searches for a very large number of features
(in overparameterized layers) against smaller activation maps
(information filtered from previous layers). Filter pruning

VOLUME xx, 2020 229071

M. A. Hanif et al.: Resistive Crossbar-Aware Neural Network Design and Optimization

FIGURE 13. Deeper layers (flat slope, upper right corner) offer high
pruning potential with minimal accuracy loss.

Algorithm 1 Structural Filter Pruning
Result: ConvNet with pruned filters
Input: Trained ConvNet, δ, α;
initialization: Split train-valid dataset
while Accuracy loss < δ do

for pruning_iteration i do
rank filters by batch normalization constants in each
layer
eliminate filters below α;
generate compact model;

end
fine-tuning to recover accuracy

end

enforces concentration of these features in fewer parameters
by eliminating the excess filters.

C. PRUNING ALGORITHMS
1) INTER-FILTER SPARSITY
Observing Figure 13, we propose a filter-pruning algorithm
based on state-of-the-art research to eliminate filters with low
impact on network performance [82], [83], [86].

Optimization objective for network training is given as:

L =
∑
(x,y)

Loss Function(f (x,W), y)+ λ×
∑
γ∈B.N .

g(γ) (2)

x, y,W represent input, ground-truth and network weights
respectively in Equation 2.

Summary: Algorithm 1 minimizes the output scaling
batch normalization constant (γ) associated with each layer
using the regularizer in Equation 2. δ represents the tolerable
accuracy loss (dataset dependent), and α represents the
filter pruning threshold hyper-parameter (determines the
aggressiveness of pruning). When a specific filter’s output
scaling constants fall below the threshold, the filter is forcibly
set to zero and eliminated from the layer. The fine-tuning
process continues with a new copy of the model without this
filter and proceeds to recover the accuracy loss.

Algorithm 2 Perception Field Pruning
Result: ConvNet with pruned receptive fields
Input: Trained ConvNet, θ, ε, δ
initialization: Split dataset into train-validate
while While weight groups were pruned in last 5 epochs do

SGD with regularizer (3)
if norm of weight group < ε then

eliminate group from tensor
end
if accuracy loss < δ then

increase θ
else

decrease θ
end
fine-tune to recover accuracy

end

Strength: The algorithm scales asO(Layers) with network
depth, orders of magnitude better than O(Weights) scaling
followed by [19]. For example, most networks usually have
102 layers vs 109 weights.

We hypothesize that incorporating the filter pruning
process within network training process by including the
crossbar parameters within the loss function may provide for
highly targeted improvements in efficiency, but at the cost of
code portability. However, this is left for future work.

2) INTRA-FILTER SPARSITY
Perception field-based structured pruning [87] offers oppor-
tunity to reduce unrolled filter dimensions (Figure 2,
Equation 6). We observe that this may be utilized to eliminate
spillover while minimizing accuracy degradation.

Truncated l2,1 norm regularizer for unified weight-group
sparsity across filters is given as:

ωT2,1(K) = λ× min
∑
a,b,j

(

√√√√ T∑
t=1

K (a, b, j, t)2, θ) (3)

In Equation 3, K represents the filter3 and λ denotes the
weight-decay hyper-parameter. l2,1 norm is favored over the
group lasso due to higher computational
efficiency [81], [88], [89].

Summary: Algorithm 2 details the perception field prun-
ing algorithm. θ, ε, δ are hyper-parameters representing the
intensity of field pruning, threshold for setting weight-groups
to 0, and tolerable accuracy loss, respectively. Pruned weights
are eliminated from the network using sparsity masks for
each layer. The performance of the algorithm was generally
observed to be insensitive to the choices of θ & ε. δ must be
tuned based on the dataset.

Strength: It has been observed that high-entropy weights
in receptive fields tend to cluster in almost circular shapes
upon pruning, similar to Figure 14 [87]. This is an inter-
esting observation which correlates with findings from the

3same as described in Section II.A

229072 VOLUME xx, 2020

M. A. Hanif et al.: Resistive Crossbar-Aware Neural Network Design and Optimization

FIGURE 14. Sparse receptive fields tend to cluster in roughly circular
shapes, mimicking biological visual receptors. Non-zero weights shown in
white.

biological visual cortex [90], andmay be attributed to nature’s
preference for circular feature detectors (an area-minimizing
shape) against sharp-edged square fields used by artificial
neural networks (due to underlying computation scheme).
However, in case of very small filters (1 × 1), the algorithm
might not offer any compression. In our analysis, we observed
that such filters constitute less than 0.1% of the network
parameters.

A natural question arises regarding the initial costs
involved in effectively exploiting these optimizations. Argu-
ments in favor include:

1) Figure 1 and 2 demonstrates how filter-pruning and
field-pruning algorithms improve crossbar utilization
significantly (detailed results in Section VII.D).

2) Both pruning algorithms are directly applicable to all
contemporary and future convolution-based architec-
tures, and scalable across network width and depth.
[34]

3) The algorithms enable networks to exploit crossbar’s
parallelism model effectively and do not mandate
any specialized hardware support to obtain practical
speedups, unlike prior proposals [13].

4) Initial network mapping on crossbar expedites very
high write energy, which is directly reduced by these
optimizations [91].

5) These recommendations are orthogonal to hardware
innovations and software optimizations presented in
prior works [92]–[94], which ensures future relevance
of these ideas and algorithms.

We do not drive the pruning processes to the maximum-
possible sparsity achievable by these algorithms. This is
because the objective is to maximize crossbar amenabil-
ity while using as few pruning iterations as possible.
This eliminates diminishing returns in the optimization
process.

D. ALGORITHM SELECTION
The crossbar occupancy ratio quantifies the density of
non-redundant weights in the occupied crossbars.

Occupancy Ratio =
Number of occupied junctions
Total available junctions

(4)

Consider the example of a convolutional layer with
128 3 × 3 × 64 filters, and a 128 × 128 dimension
crossbar. Unrolling these filters, the mapping dimensions are

Algorithm 3 Crossbar-Aware Network Pruning
Result: Pruned ConvNet with higher occupancy ratio
Input: Trained ConvNet, δ, α, θ, ε, δ
initialization: Split dataset into train-validate
1. Determine the number of crossbars needed for each layer
in the original network.
2. Identify layers with low occupancy ratios and concurrent
junctions (using algorithm IV-B).
3. Apply both pruning algorithms separately to generate
sensitivity curves similar to Figure 13. This is used to identify
the vulnerable weight groups and layers for pruning.
4. In case of low �, prefer perception field pruning
(algorithm 2).
5. In case of high �, prefer filter pruning (algorithm 1).

576×128, which need 5 crossbars for computation. Mapping
without pruning wastes 50% of the row space in the last
crossbar, yielding 0.9 occupancy ratio. Using the perception
field pruning strategy, pruning a single weight group yields
new dimensions of 512×128, which can be perfectlymapped
on 4 crossbars, improving area-efficiency by 20%.

Alternately, using the filter pruning strategy, 8 filters must
be pruned from the previous layer to obtain new dimensions
of 504 × 128. This yields a map of 4 crossbars, with 10%
improvement in occupancy ratio (= 0.99). It can be observed
that both strategies may be exploited to reduce the unrolled
tensor dimensions. To enable balancing between these
algorithms efficiently, we define a new hyper-parameter �,
which can be set for each layer in the network.

� =
Row Occupancy Ratio

Column Occupancy Ratio
(5)

A low row occupancy ratio implies large filter dimensions
spilling over into neighboring units. In this case, Equation 5
indicates� sits closer to 0, which prioritizes perception field
pruning. In case of low column occupancy ratio,� gets biased
towards higher values, prioritizing filter pruning.We combine
these observations in algorithm 3.

In our experiments, we observed that � ranges from
1 to 1000, with a theoretical upper limit of 106. �
must be adjusted for every network and dataset. It would
be interesting to consider integrating it as a learnable
hyper-parameter during the network training itself, paving
the way for dynamic network pruning techniques given
crossbar specifications [33], [95]. However, this needs further
exploration and is left for future work.

E. KEY TAKEAWAYS
We demonstrate that:

1) Structured pruning is critical for aligning neural
network computation with the resistive crossbar’s
parallelism model.

2) We present a filter-pruning algorithm to alleviate the
spillover challenge across crossbar columns. Detailed
results are discussed in Section VII-C.

VOLUME xx, 2020 229073

M. A. Hanif et al.: Resistive Crossbar-Aware Neural Network Design and Optimization

3) We present a convolutional-filter field pruning algo-
rithm to alleviate the spillover challenge across
crossbar rows. Detailed results are discussed in
Section VII-C.

4) We demonstrate how to pick the appropriate algorithm
given practical constraints.

IV. HARDWARE OPTIMIZATIONS
This section explains the hardware optimizations which
improve the energy/power efficiency of DNN inference.
Section IV-A explains how computations of a convolu-
tional layer can be parallelized on crossbar-based hardware.
Section IV-B presents our pipelining strategy to improve the
computational throughput. Section IV-C exploits the lack of
weight sharing in FC layers to reduce the hardware cost by
increasing the number of crossbars per ADC. In the end,
Section IV-D presents the key takeaways.

A. CROSSBAR’S PARALLELISM MODEL
Prior crossbar-based acceleration proposals [15], [70] rely
on the observation that one set of input values can be
delivered via wordlines across all columns (filters) within
the same cycle. This allows for mapping a stack of multiple
filters across columns and calculating MVM output in
a single cycle. Based on this idea, prior works advocate
a weight-stationary computation model [4] for mapping
a layer’s multiple channels on the crossbar columns. Further,
each resistive crossbar acts as an independent computation
unit. Prior works utilize this observation for pipelining
sequential layers across dedicated crossbar units. Each unit
receives partial inputs to start processing it’s outputs, and
delivers these outputs to the next crossbar in the pipeline [15].

B. PIPELINED MAPPING FOR CONCURRENT JUNCTIONS
Based on the parallelism model, we develop the Concurrent
Junction Identification and Mapping algorithm to maximize
crossbar occupancy_ratio and computational throughput.
We first define the mapping algorithm and corresponding
assumptions, and then explain our methodology and ratio-
nale. We model the neural network computation data-flow as
a static, directed acyclic graph (DAG). A vertex is defined
as a computation node, with each node representing a single
channel of the current convolution layer. In this graph,
we input an image at the source vertex (start layer, 3 input
vertices for 3 channels), and traverse the graph based on the
operations defined at each edge to obtain an output value
at the sink vertex (output layer, vertices equal to number of
output classes). We define concurrent junctions as a vertex at
which there are multiple outgoing edges in the graph. In terms
of data-flow, this is equivalent to a neural network junction
in which the current activation map is delivered to multiple
filters in the next layer.

We exploit the column-level parallelism by observing
that residual connections (in ResNet) and split branches
(in InceptionNet, TreeNet) also represent concurrent junc-
tions. These concurrent junctions offer similar column-level

parallelism opportunities.We also observe that ensembles can
be represented via connected components in this computation
graph, and the input layer represents a concurrent junction for
the same. These observations were ignored by prior works,
a gap which this work seals.

Formally, concurrent junctions can be identified via a
Breadth-First Search (BFS) on the graph (vertices sharing
the same processing number). BFS is used to group vertices
into concurrent junctions which can be mapped on the
same crossbar’s columns. Algorithm IV-B describes the
implementation details. The group identifier is used to group
vertices to be mapped collectively. A group identifier of −1
indicates no group.

Strength: These optimizations enable elimination of
repeat memory accesses by mapping concurrent junctions
as channels on the same crossbar, and higher utilization
for the available ADCs. The superior occupancy ratios
enables higher area-efficiency by mapping a larger number
of networks on the same chip.

Summary: Prior works [15] map the network on cross-
bars sequentially on a per-layer basis. They exploit the
column-level parallelism by mapping the channels from the
same layer on the same crossbar. However, they fail to
consider residual and split branches in the parallelism model,
which leads to redundant off-chip memory access, lowering
computational efficiency due to poor ADC utilization and
small occupancy ratios. Step 1 in Algorithm IV-B solves this
problem.

Next, we focus on the challenge of mapping these concur-
rent junctions while balancing area and energy constraints.
Each convolutional layer in the network depends on the
prior layer’s outputs to start processing (Figure 5). In case
of deep networks, these dependencies can be exponential,
especially when considering convolution stride > 1. Prior
works manually identify these dependencies and duplicate
the crossbars with high dependency to ensure constant
throughput in deeper layers [15]. Here, we propose the
first algorithmic approach for solving this problem via a
Topological sort on the input network graph (Step 2 in
Algorithm IV-B). This approach allows us to solve the
concurrent junction and pipelining problem in a single step
instead of the manual approach of previous proposal.

C. MITIGATING THE ENERGY EFFICIENCY BOTTLENECK
1) HARDWARE CHALLENGES
Analog-digital inter-conversion (via DAC and ADC)
(Figure 16) costs 8× the actual computation energy
(performed in the memristor array, see Figure 15) in current
crossbar architectures.

2) WORKLOAD CHALLENGES
Table 2 in Section VII demonstrates how Fully Con-
nected (FC) layers are responsible for occupying the
maximum number of crossbars in a convolutional network
mapping. Prior works have shown that it is possible to

229074 VOLUME xx, 2020

M. A. Hanif et al.: Resistive Crossbar-Aware Neural Network Design and Optimization

Algorithm 4 Concurrent Junction Identification and
Mapping
Result: Pipelined crossbar mapping which accounts for all

concurrent junctions in the network computation
graph

Input: Input Neural Network in DAG representation
Step 1: Breadth-First Search to identify concurrent junc-
tions
Initialization: Instantiate each vertex’s group_identifier =
−1, push the start vertex on the vertex_queue, update
the start vertex’s group_identifier = 0, instantiate the
vertex_counter = 1.
while queue has pending vertices do

1. Pop the vertex at the top of queue, start processing it.
2. For each outbound edge, add the outbound vertex to
vertex_queue. Assign the current vertex_counter to this
vertex’s group_identifier.
3. Increment vertex_counter by 1.
if any vertex is unexplored (group_identifier == −1) then

Add vertex to vertex_queue
// ensures all graph components
are covered

end
end

Step 2: Topological Sort to balance the pipeline between
vertex_groups
Initialization: Instantiate each vertex’s sequence_identifier =
−1, push the start vertex on the vertex_queue, update the start
vertex’s sequence_identifier = 0.
while queue has pending vertices do

1. Pop the vertex at the top of queue, start processing it.
2. For each outbound edge
if vertex already visited (sequence_identifier ! = −1) then

Sequence_identifier = current vertex’s
sequence_identifier + 1.
Recurse on this vertex until no more neighbours exist.

end
if any vertex is unexplored (sequence_identifier == −1)
then

Add vertex to vertex_queue
// ensures all graph components
are covered

end
end

Step 3: Mapping pipelined vertex_groups on crossbar
while sequence_identifier ! = end do

1. Assign each filter from the vertex_group progressively
on crossbar’s columns.
2. In case of large strides, duplicate the dependency
crossbars for maintaining throughput in deeper layers.
3. In case of more columns needed than available, saturate
current tile’s available crossbars beforemoving to next tile.

end

reduce this requirement by pruning such layers [19], [34],
[96]. Unlike convolutional layers, there is no weight-sharing

FIGURE 15. Understanding the per-component cost of analog compute in
ISAAC [15] microarchitecture.

in FC layers, which nullifies the energy savings due to
weight-reuse (per input cycle) in crossbars. Moreover, the all-
to-all communication bottleneck prohibits processing with
partial outputs from the previous layer. As an illustra-
tive example, consider the FC7 layer in VGG16 with
4096 × 4096 dimensions, mapped on 128 × 128 2-bit
crossbars. 8192 crossbars are required for calculating the
result for one input in a single cycle. A naive strategy
to reduce crossbar storage requirements would be matrix
tiling, overwriting the corresponding tiles with the required
FC weights as inputs become available. As an example,
if we dedicate only 256 crossbars for this layer, 32 context
switches would be needed to compute the output. However,
this approach is infeasible due to the enormous differences in
current read/write capabilities for underlying devices.4

3) OPTIMIZATION
ISAAC utilizes a ratio of 1 ADC/crossbar to maintain
the digital output pipeline for every cycle. Considering
the enormous energy cost for writing new weights in
crossbar on-the-fly against ADC power/area consumption
(Figure 15), we propose increasing the number of crossbars
per ADC in specially dedicated DNN_Tiles. This distributes
the computation load across multiple ADC cycles in a
pipelined fashion. The input data buffer requirements can be
reduced and aligned with ADC availability for the particular
crossbar with corresponding weights. In the example noted
above, using an 8 crossbar/ADC ratio reduces buffering
requirements per output cycle by 8×, per IMA power
by 58%, area by 65.8%, and produces a more balanced
pipeline at the cost of 8 extra cycles. More importantly, this
technique provides for easier manipulation of chip’s power
consumption without relying on power gating the ADCs.

D. KEY TAKEAWAYS
We demonstrate that:

1) The crossbar’s computationmodel is based on indepen-
dent column-based computation units. Hence, aligning
the network’s MAC computations with column sizes
improves efficiency.

2) The crossbar’s data-flow model is based on common
vector inputs to the wordline, which are shared across

4memristor write cycle costs three orders of magnitude higher energy and
one order of magnitude higher latency than read cycle [91]

VOLUME xx, 2020 229075

M. A. Hanif et al.: Resistive Crossbar-Aware Neural Network Design and Optimization

all columns. Hence, the network filters that share
common activations must be aligned across the same
crossbar’s columns to reduce data movement.

3) Large fully connected layers worsen the energy effi-
ciency for crossbar designs. This problem can be
solved by reducing the number of ADCs allocated for
computing FC layers.

V. CROSSBAR-AWARE NEURAL NETWORK DESIGN
Considering the aforementioned problems including high
number of crossbars needed per network, low occupancy
ratio extending to spillover, and peripherals throttling the
energy efficiency, designing novel crossbar-aware network
architectures can tremendously increase the computation
efficiency with minimal changes to the hardware architec-
ture. Surveying state-of-the-art neural network architectures
[97]–[104], we propose the following design strategies
targeting convolutional neural network design for resistive
crossbars:

1) STRATEGY 1: SMALL PERCEPTION FIELDS
Crossbar column size is bottlenecked by ADC precision and
bitline current draw constraints. Large columns offer poor
energy and area efficiency, hence, smaller column sizes are
preferred.

Unrolled filter parameters = Kx × Ky × Ni (6)

Equation 6 represents the unrolled vector length needed to
map a convolutional kernel on the crossbar column. Smaller
filters offer a quadratic reduction in required row capacity
(5 × 5 has 3× more parameters than 3 × 3 for a fixed
number of input channels). Prior works [2], [8], [105],
[105] have demonstrated that stacks of smaller filters can
approximate a large filter without losing the information
capacity. For example, a stack of three 3 × 3 filters has the
same representation capacity as one 7× 7 filter, with almost
half the parameter cost. Furthermore, larger perception fields
have been demonstrated to be significantly redundant towards
the fringes (Figure 14) [87].

2) STRATEGY 2: DECOMPOSING CONVOLUTION FOR
CROSSBARS

Output datapoints =
⌊
Ainx + 2× padding− Kx

stride
+ 1

⌋2
×No (7)

Equation 7 formula is used to calculate the number of
calculations needed to compute the output for the convo-
lution operation. It may be observed that decomposing the
perception fields from Kx × Ky to K × 1 (spatial-separable
convolution [99], [105]) reduces network’s parameter costs
and cycle count from quadratic (K 2) to linear (2K) scaling,
as compared to standard 3D convolution computation.
Depth-wise convolution [100] breaks down Equation 7

in 2 stages - depth-wise (Kx × Ky × 1) and point-wise

(1 × 1 × No) [106], [107] convolutions. For illustration,
consider a 12 × 12 × 3 activation map and 5 × 5 × 3
filter, generating 8 × 8 × 256 output. Standard convolution
costs 1, 228, 800 multiplications, which is reduced to 4800+
49152 = 53952 = 4.4% of original 1, 228, 800
multiplications by depth-wise format (Equation 7). Notably,
it is further possible to create a pipeline between the 2 stages,
drastically reducing the inter-layer buffering requirement and
cycle count.

3) STRATEGY 3: SMALLER CONVOLUTION STRIDE
Prior works [15], [70], [71] focus on maintaining a constant
output throughput by balancing the data pipeline between
the layers. The key observation is that this pipeline model
advocates duplicating shallow layer crossbars to meet the
succeeding layer’s input buffer requirements. Let Sx and Sy be
the convolution strides in x & y direction over the activation
maps. To prevent data non-availability stall in the Lx layer,
the previous layer’s (Lx−1) crossbars must be duplicated by
Sx×Sy. As an illustrative example, consider a network with 5
identical sequential convolution layers. If all layers perform
convolution with a stride of 2 in both directions, crossbars
assigned for layer 1 must be replicated 1024 times to produce
results from the final layer in every cycle.

Based on this observation, we propose enforcing low
stride values (1, 2) in deeper layers. This can help in easily
eliminating data non-availability stalls. Further, multiple
network design research groups [2], [105] have reported
higher accuracy and low parameter count by avoiding
premature down-sampling of the information flow towards
the deeper layers, a key feature of low stride values. Some
groups [108] also report balancing this down-sampling
process via the MaxPooling layers (which do not utilize
crossbars). It should be noted that larger strides in pooling
layers are easily manageable as they depend on digital
peripherals.

4) STRATEGY 4: 1× 1 FILTERS TO COMPRESS DEEP FILTERS
Equation 6 demonstrates that Ni (filter depth) directly
inflences the final filter size mapped on crossbar column.

Equation 7 demonstrates that a large number of filters in the
current layer proportionally increases the next layer’s input
dimension (×No).
To solve this problem, most modern network designs

[9], [108] utilize 1×1 filters (introduced in [109]) to compress
information from multiple channels into a single map. This
can significantly reduce the output dimensions and cycle
count for deeper layers.

5) STRATEGY 5: ELIMINATE/ZZZZZ/WWWWW/PRUNE FULLY
CONNECTED LAYERS
The fully connected (FC) layers tend to concentrate the
weight density in most designs [4]. With an all-to-all
communication requirement, minimal weight-sharing and
enormousmatrix dimensions (7×7×512∗4096 FC-1 layer in

229076 VOLUME xx, 2020

M. A. Hanif et al.: Resistive Crossbar-Aware Neural Network Design and Optimization

VGG-16 needs 50176 128×128 2-bit crossbars), these layers
are a bottleneck for storage efficiency.

Modern network architectures [9], [108], [109] eschew
FC layers in favor of global average pooling, which boosts
computation performance and also increases the accuracy
slightly. If they cannot be eliminated, pruning such layers
yields almost immediate improvements in storage efficiency
and cycle count. However, unstructural pruning advocated
in [19], [75] mandates dedicated hardware support for
effective speedup.

Focusing on conv5 layer in Figure 13, we observe that
pruning entire filters from the last convolutional layer can
dramatically reduce the matrix dimensions, while preserving
data locality (pockets of dense connections corresponding to
remaining layers). For example, pruning merely 50% filters
in the last convolutional layer of VGG16 cascades as a direct
50% reduction in area requirement. This is well below (55%)
the total number of filters which can be pruned from this layer.

Although these strategies look relatively straightforward,
they have far-reaching consequences for the hardware-
software co-design search space:

1) These ideas provide constraints on the network
design search space. This is important for apply-
ing state-of-the-art reinforcement learning and Net-
work Architecture Search (NAS) based techniques
for automatically discovering hardware-aware network
designs. [110]–[113].

2) As software requirements get easier to estimate,
hardware architects can focus on optimizing ISA, error
correction codes, compilers and tackling the precision
challenges, while offering higher performance guaran-
tees [114]–[116].

A. KEY TAKEAWAYS
We demonstrate that:

1) Resistive crossbars offer a different computation model
which was not considered as part of the design process
of contemporary neural networks.

2) We identify the shortcomings observed in existing
hardware and software. Based on this analysis, we pro-
pose the first crossbar-aware design strategies for
optimizing network performance.

VI. A NOVEL NEURAL NETWORK FAMILY - CrossNet
In this section, we utilize the proposed strategies to explain
the design choices for a crossbar-aware network architecture
and propose the CrossNet family of networks.

A. CrossNet
We began the quest for a novel crossbar-aware network
architecture by modifying the SqueezeNet architecture [108],
intending to improve the design towards higher hardware
amenability and/or task accuracy. To improve the accuracy,
we first tried to increase the number of parameters in the net-
work by reducing input channel compression. If the number

of input channels for all expansion layers are increased by 4×,
Top-5 accuracy improves to 85.3%, at the cost of 2.39× extra
crossbars. Interestingly, the occupancy ratio also improves to
0.882 (32.45% increase). To understand the impact of 1 × 1
and 3×3 filters on task accuracy and hardware performance,
we replaced all 3 × 3 filters in-place by 1 × 1 filters.
The accuracy dropped to 76.3%, occupancy ratio reduced
by 4.57%, and the number of crossbars decreased by 30%.
Several such optimization rounds of the channel squeeze and
expansion parameters, network depth, and application of the
aforementioned crossbar-aware network design techniques
led to the novel architecture family, which we titled as
CrossNet.

The first variant, CrossNet-A, achieves SqueezeNet-
equivalent accuracy, with 2× lesser parameters, 16.85%
improved power efficiency (defined as MACs / area for
unit energy consumption), and 2.5× higher computational
efficiency (defined as MACs / number of cycles). The net-
work achieves the highest computational efficiency (19.06×
against VGG11) at the lowest storage cost (149.5× lower
against VGG11) among all bench networks. To further
improve accuracy, we increased the activation map dimen-
sions and the number of channels, which resulted in the
CrossNet-B architecture.

CrossNet-B achieves accuracy closer to GoogleNet
(88.2%), with 2.89× higher accuracy/million-parameters.
Unlike the CrossNet-A, CrossNet-B has double the number
of input channels in most layers. Further, it achieves
high-accuracy with a 58.93× lower parameter count than
VGG-11, effectively offering 58× higher accuracy/million-
parameters. A notable aspect is that the CrossNet designs
utilize a single FC layer before final output from the
Softmax classifier. To reduce the input dimensions to the
FC layer, the input channels are average-pooled into a single
channel (Strategy 5), which tremendously reduces the storage
requirement (1000× lower than VGG family). Extensive
focus on the strategies noted above significantly reduced
the search space while enabling the architecture to achieve
the highest computational and power efficiency among all
network benchmarks.

We present comprehensive results for the improvements
obtained by these designs over contemporary networks
(Section VII.E), along with hardware mapping results and
network specifications for both CrossNet-A and CrossNet-B.

B. ENSEMBLES
Drawing upon the deductions from ILSVRC-2014 winners
(Section I), we hypothesize that it should be possible to
further improve CrossNet’s performance with simple ensem-
bling strategies. To validate this hypothesis, we experiment by
making an ensemble of 4 units and attempt to map the same
on-chip.

The ensemble utilized naive averaging as final output, and
no special modifications were required in hardware to support
this design. Based on Figure 10’s observations, Random
Initializationwas observed to providemaximumperformance

VOLUME xx, 2020 229077

M. A. Hanif et al.: Resistive Crossbar-Aware Neural Network Design and Optimization

FIGURE 16. Architecture of ReRAM crossbar-based DNN hardware.

FIGURE 17. Experimental design flow.

improvements and was selected as the ensembling method in
this case.

We observed that it was easier to improve the task accuracy
with an ensemble of models trained for fewer epochs,
as compared to training a single model for a large number
of epochs. This may be understood as a parallelization of
exploration of the network’s training search space, with
simplified linear scaling of compute costs. The ensemble’s
performance was initially worse than individual models.
However, after 5 epochs, the performance improved and
surpassed the individual model’s accuracy. Upon continued
training, the 60-epoch ensemble’s performance surpassed a
200-epoch single model.

C. KEY TAKEAWAYS
We demonstrate that:

1) The proposed CrossNet family of neural networks
significantly outperforms prior network designs in
computational and power efficiency.

2) The performance improvements are well understood,
and attributed to aligning the neural network architec-
ture with the crossbar’s parallelism model.

3) We consider ensemble systems as first-class candidates
for practical deployments and include them as part
of the testing conditions. The Results Section VII.F
quantifies the improvements obtained.

VII. RESULTS
A. EXPERIMENTAL SETUP AND METHODOLOGY
Figure 17 explains the methodology used for this paper.
Neural Network definitions were utilized from PyTorch’s

model library.5 The networks were trained on a NVIDIA
Tesla K80 GPU via the Google Colab platform. For
ensemble training, we chose the CIFAR-100 dataset for
experimentation as it represents a sweet spot in terms of
complexity (100 output classes, 50000 training examples,
10000 test examples) and training time (240 seconds per
epoch). Training was performed using the Adam optimizer
with the following hyper-parameters: learning_rate = 0.1,
learning_rate_decay = 0.02, num_epochs = 200,
batch_size = 128, momentum = 0.9, weight_decay =
5e− 4.
Considering the lack of open source tools to map network

workloads comprehensively on crossbar microarchitectures,
we wrote a compiler for mapping a given network con-
figuration on the crossbar microarchitecture (Figure 17).
We open-source the compiler code for the benefit of the
research community at the code repository.6

This work primarily targets improvements in data-flow
characteristics at the fundamental level of the resistive
crossbar PIM platform. Owing to the fast-paced changes in
underlying memristor cell development (bit-size, endurance,
isolation mechanisms etc. [117]–[120]) and immature MLC
fabrication technology [121]–[123], we assume a generalized
crossbar system (Figure 16) as the fundamental computation
unit. This enables us to validate the ideas and strategies
independent of device characteristics. Further, this system
allows us to verify how these ideas will scale with future
developments in resistive memory technology. Our compiler
accepts a crossbar_configuration file along with Pytorch
model file and generates the corresponding network maps.

Table 1 details the power and area values for all microar-
chitecture components in this system. For crossbar latency,
energy and area, we utilize [15], [59], chosen primarily due to
the clarity of approach and reproducibility. For handling the
precision challenge, we utilize a 16-bit computation model,
spread out across 8 columns of 2-bit cells in a 128 × 128
crossbar array [59]. 1-bit DAC and 8-bit ADC are used for

5https://github.com/pytorch/vision/tree/master/torchvision/models
6https://github.com/adityamanglik/NeuralNetworkCrossbarCompiler

229078 VOLUME xx, 2020

M. A. Hanif et al.: Resistive Crossbar-Aware Neural Network Design and Optimization

FIGURE 18. Logarithmic scale for number of crossbars highlights immense storage requirements, addressed by our strategies and algorithms.

TABLE 1. Energy and area for different microarchitecture
components [15].

analog-digital signal inter-conversion. The clock speed for
computations is 10MHz, and the ADC operates at 1.28 Gsps.

B. CROSSBAR DESIGN SPACE EXPLORATION
Using the diverse network bench (Table 2), we performed
a design space exploration to determine the ideal crossbar
system. An oracle system (ideal scenario) should offer
highest possible occupancy ratios (maximum 1.0) while
minimizing the compute area (determined by crossbar
dimensions and cell bit-size), for any network architecture.
Due to the aforementioned challenges associated with large
crossbars (high IR drop and high read/write voltage require-
ments), we constrained the upper-limit of crossbar size as
512 × 512. Furthermore, multiple works [124]–[126] have
reported neural network accuracy to be unaffected when
reducing computation precision to 16-bit. This allowed us
to place an upper-limit of 16-bit on the MLC bit-size
(Figure 18(c)). For lower bit-sizes, the computation is spread
across 16/w columns, where w represents the cell bit-size
(this has no effect on output accuracy, as noted in [15]).

Analyzing Figure 18 (a) and (b), we observe that 128×128
crossbar size is suitable for minimizing the area requirement
for large networks, while maintaining high occupancy ratios.
Interestingly, 64 × 64 crossbars offered higher occupancy
ratios on average, but were deemed impractical due to unfea-
sible area requirements (VGG19 needed 280576 crossbars,

translating to 5506.3 mm2 area). On the basis of these
observations from the design sweep, we concluded 128×128
size as the best-fit. Figure 18 (c) demonstrates the variations
in the number of crossbars for different networks across cell
bit-size (addressability). Increasing the cell addressability
by one order of magnitude inversely reduces the number
of crossbars by 93.72%, but the power and area costs
associated with corresponding high-precision peripherals
and analog-digital inter-conversion circuits7 severely limit
throughput improvements. In our design space exploration,
w= 2 emerged as a sweet spot in terms of balancing the area
and energy trade-offs for the test bench.

1) COMPARISON WITH CPU AND GPU
Using this configuration, AlexNet [127] can be mapped on
30474 (2-bit) crossbars. Single inference pass for one image
costs 3025 cycles. For a batch of 16 images, our reference
system requires 4.8 ms. For comparison, the NVIDIA GTX
1080 GPU requires 7 ms. for the same batch. We infer that
our system is 31.43% faster than the GPU, at a 16× lower
clock speed. This speedup can be explained by the massively
parallel compute capabilities and weight-stationary data
layout in crossbar-based microarchitectures.

The VGG-19 [8] network requires an enormous 70168
crossbars & 50176 cycles, costing 80.28 ms for the same
16-image batch. We now compare to an Intel Dual Xeon
E5-2630 v3 CPU, which consumes 3609.78 ms. In this
case, our system is 44.96× faster at 320× lower clock
rate. Essentially, performing the multiply-and-accumulate
operation via analog computation in a single column read,
and processing multiple filters in the same cycle leads to high
throughput for such GEMV dominated algorithms.

C. PRUNING ALGORITHMS
Figure 19 demonstrates normalized layer-wise area reduction
obtained by channel pruning. We observe that, on average,
pruning reduces the number of input channels by 81.2%
across convolutional layers. This translates to 91.68%
average reduction in the number of crossbars needed to map
the network. Pruning the last convolution layer reduces the
fully connected layer dimensions by 92.35%. Further, This
reduction does not sacrifice the dense structure of the matrix

716-bit DAC and ≥ 26-bit ADC are needed for 16-bit MLC cells

VOLUME xx, 2020 229079

M. A. Hanif et al.: Resistive Crossbar-Aware Neural Network Design and Optimization

TABLE 2. Network maps obtained by our compiler for 128 × 128 crossbar with 2-bit computation model. Cycles and Computational Efficiency have been
normalized as these values are microarchitecture dependent.

FIGURE 19. Impact of network pruning on the channels and crossbars
units occupied by each layer of the VGG-16 network.

as the occupancy ratio for the remainder crossbars remains
high (96.98%), corroborating Strategy 5. An interesting trend
to note is the performance of the algorithm as we increase
the network’s depth. Initial layers offer less pruning viability
due to small tensor dimensions (attributable to the fact that
shallow layers extract high entropy features. Eliminating
such filters causes a sharp accuracy drop (also seen in
Figure 13)). In contrast, deeper layers offer high compression
rates. Compoundedwith large tensor dimensions, these layers
offer highest storage efficiency improvements.

In our reference system, the VGG19 conv2_1 layer has
� = 0.11. In this case, algorithm 3 favors perception
field pruning which eliminates fringe weight groups and
reduces storage requirement by 40%. Further, it eliminates
50, 176 input data loads at zero accuracy cost. For testing
algorithm 3, we forcibly bias� = 1 for the same layer. In this
case, algorithm 3 enforces filter pruning strategy, eliminating
35.16% channels and 33.33% crossbars. However, occupancy
ratio decreases by 13.56%. Input datamovement is unaffected
by this pruning, justifying the algorithm’s original choice for
field pruning.

1) COMPARISON WITH PRIOR WORK
Training neural networks with stochastic gradient descent
using back-propagation scales byO(3×N 3)× (X/m), where
N is the number of weight matrices, X is the number of
training examples, and m is the mini-batch size.
The spectral clustering scheme proposed by TraNNs-

former [75] costs O(N 3) run-time additionally per filter
(pushing training costs as high as O(N 6)), and is executed
multiple times per training epoch. Such expensive opti-
mization strategies are impractical for even medium-sized

FIGURE 20. DNN_Tiles improve power efficiency tremendously for fully
connected computations.

networks, far more so for large networks and ensembles. Our
filter pruning algorithm prunes the networks in O(Layer)
additional cost per layer, per pruning epoch, a much more
scalable and practicable approach.

D. HARDWARE OPTIMIZATIONS
1) CONCURRENT JUNCTION MAPPING ALGORITHM
Using the algorithm IV-B for SqueezeNet [108] reduces the
number of crossbars by 20.51%, improving the occupancy
ratio by 25.8%. However, it also increases the number of
cycles by 3.042×, effectively decreasing the computational
efficiency by 58.64%. However, overall power efficiency
improves by 28%. We hypothesize that such dense mappings
can be especially useful for field devices with constrained
power envelopes, low memory/low-cost deployments, and
edge computing scenarios (for IoT).

2) DNN_TILES
Figure 20 demonstrates power efficiency improvements
obtained as we sweep the number of crossbars assigned per
ADC. GoogleNet and SqueezeNet networks were not con-
sidered for this experiment due to absence of fully connected
layers. For the stock configuration (leftmost set), CrossNet
family offers maximum performance per Watt, thanks to a
network architecture designed to maximize power efficiency
for the given hardware. AlexNet and the VGG family have
poor power efficiency on account of poor utilization of
the available ADCs in the FC layer crossbars. However,
as we increase the number of crossbars/ADC, these networks
significantly improve the energy efficiency with minimal
latency increment (increases by less than 1% of overall
network’s latency). Further, CrossNet family’s minimal use

229080 VOLUME xx, 2020

M. A. Hanif et al.: Resistive Crossbar-Aware Neural Network Design and Optimization

of FC layers results in insignificant improvements in energy
efficiency across the sweep, corroborating Strategy 5.

E. EFFICACY OF DESIGN TECHNIQUES
Table 2 details results for the benchmark neural networks.
To quantify the impact of our crossbar-aware network
design techniques (Section V), we performed an ablation
study with the network test bench. We observe that small
perception fields help reduce the VGGNet’s input layer
(3 × 3 × 3) requirements by 66% against AlexNet
(11×11×3), in line with Strategy 1. The VGG architectures
require 60384 crossbars for the FC layers alone, which
represents 86.05−93.05% of total storage requirement across
different variations (11-19 layers deep). For comparison,
GoogleNet’s complete ensemble with 7 networks (ILSVRC-
2014’s winning submission) requires only 21910 crossbars.
This gap illustrates the challenges of FC layer’s storage
requirement on crossbar architectures. Interestingly, AlexNet
and VGG have superior occupancy ratios, ascribed to an
extremely uniform architecture for both networks, compared
to the heterogeneous filters and information flow splits in the
GoogleNet. AlexNet has the highest occupancy ratio and a
low cycle count, which enables it to have the second-highest
computational efficiency (only 19.35% lower than CrossNet,
discovered 7 years in the future).

The Inception module uses heterogeneous small filters
(1×1, 3×3, 3×1 and 1×3 etc.) in the same layer (similar to
Strategy 1 noted above). GoogleNet uses the global average
pooling layer instead of fully connected layers (in line
with Strategy 5). The authors observe that average pooling
improves classification performance by 0.6% as compared to
FC layers. However, the original paper [9] mentions the use
of a single fully connected layer for transfer learning towards
different computer-vision tasks using a pre-trained network.
As this layer has no significance for the original network’s
performance, we ignore it in our analysis. InceptionNet
v1 also utilizes Local Response Normalization (LRN) layers,
which are no longer considered important for the network’s
performance [128]. Future iterations of this architecture (v2,
v3, v4) [105] eliminate these layers. Hence, we safely ignore
them in our analysis.

The SqueezeNet [108] network utilizes Fire modules
comprising of squeeze layers (1 × 1 convolutions, similar
to Strategy 1 dicussed in Section III.C) and expand layers
(3 × 3 convolutions). This is an interesting design choice
as the expand layers are forced to use fewer channels due
to the preceding squeeze layers (in line with Strategy 4).
The network uses a stride of 1 for all convolutional layers
(Strategy 3) and stride of 2 for max pooling, primarily
for down-sampling activation maps. By replacing the Fully
Connected layer with Global Average Pooling (Strategy 5),
the architecture achieves AlexNet (60 million parameters)
equivalent accuracy with only 1.25 million parameters.
SqueezeNet achieves the second-highest Accuracy-per-
million-Parameters and second-lowest crossbar requirements
by compressing input channels (using 1 × 1 squeeze layers)

before feeding into larger filters (Strategy 4). The last
convolutional layer occupies merely 37 crossbars against 101
for GoogleNet and 144 for VGG11, attributable to slower
down-sampling of information flow (Strategy 2 and 3).
However, the Squeeze layers have low occupancy ratios
(due to 1 × 1 filters) as compared to Expand layers, which
reduces the overall average for the network. Considering a
pipelined execution model, inter-layer activation-map buffer-
ing requirements are the lowest in SqueeezeNet (normalized
to 1× for apples-to-apples comparison), closely followed by
CrossNet (1.38 − 2.07×), GoogleNet (3.8×) and lastly the
VGG family (15.23×), exemplifying Strategy 3.

1) CrossNet ANALYSIS
CrossNet-A is a deep architecture with 105 convolution
layers, comprised almost entirely of 1× 1 filters. It achieves
Top-5 accuracy of 80.3%, which is on par with AlexNet.
However, it occupies only 1.4% of AlexNet’s area, uses
118.14× fewer parameters and offers 19.35% higher com-
putational efficiency. Despite poorer than average occupancy
ratios and a large cycle count, CrossNet-A obtains highest
power efficiency due to the efficient use of the minimized
parameter count, resulting in the lowest MAC costs per
input among all benchmark networks. Similar to CrossNet-
A, CrossNet-B architecture also has 105 layers with residual
connections. It significantly improves on the occupancy ratio
(by 2.06×) due to larger filters. Larger storage requirements
lower the power efficiency, attributable to Strategy-1. In our
experiments, CrossNet-B was favorable only when task
accuracy was critical, otherwise CrossNet-A was the more
efficient model.

2) ENSEMBLE & SPLIT NETWORK PERFORMANCE
To test improvements by the concurrent layer
mapping strategy, we mapped the ensemble of 4 CrossNet-A
networks on a single chip. The ensemble can be mapped
using 969 crossbars using algorithm IV-B. For comparison,
a sequential mapping scheme would cost 1484 crossbars
(34.7% lower storage requirement). Owing to the
concurrent mapping, the storage requirement for 4 networks
is only 2.33× higher than a single network. We observe that
occupancy ratio increases from 0.3767 to 0.8616 (2.29×
higher). Processing multiple networks simultaneously
increases the power requirement of chip, but reduced
area (on account of higher occupancy ratio) improves the
power efficiency by 2.75×. The computational efficiency
for the ensemble is 1.79× higher than a single model.
We further compare the ensemble’s observations with

a TreeNet [17] based architecture, with the network split
point observed before Convolution64 layer. Essentially,
the information flow is split and duplicated at this point,
transforming into a multi-channel stream (for reference,
the split is at the input layer in an ensemble). This design
requires 537 crossbars for processing, with an occupancy
ratio of 55.2%. Compared to an equivalent ensemble of 2

VOLUME xx, 2020 229081

M. A. Hanif et al.: Resistive Crossbar-Aware Neural Network Design and Optimization

networks, power efficiency for this implementation is higher
by 59.20%.

F. THEORETICAL REASONING FOR RESULTS
In the conventional load-store paradigm, a MAC operation
costs 3 memory accesses (i.e., O(3N) space complexity), and
scales by O(2N) time complexity. To process F different
filters (F decomposes to NX × Ny for convolution in x and
y direction), the costs increase to O(F × 3N) and O(F × 2N)
for space and time respectively.

Memristor-based PIM architecture reduces the space
complexity to O(F × 2N) by storing the filter weights
in-memory. The MAC operation is now performed in a
single cycle (Figure 11 (a)), decreasing the time com-
plexity to O(F × 2). Please note, the hidden con-
stants in these run-times have increased considerably
due to the addition of peripheral components associated
with mixed-signal processing. However, the overall design
still yields higher computation efficiency due to massive
parallelism [15].

In this paper, we propose optimizations that further
reduce the space complexity to O(2N), yielding higher
energy efficiency due to reduced data movement. For F
filters, we obtain 1 −

1
F normalized reduction in

main memory accesses. Theoretically, a higher value of F
inversely reduces energy costs, but due to the crossbar’s
physical limitations (write disturbance, wire parasitics,
sneak current, etc.), practical improvements do not scale
linearly [91], [129], [130].

VIII. CONCLUSION
This work represents the first step in the direction of
understanding and quantifying the existing challenges in
resistive crossbar-aware neural network design and opti-
mization. We present the first pruning algorithms for CNNs
on crossbars, improving crossbar amenability by 40%. We
also explore various facets of optimizing neural network
processing at scale while improving energy (2.75×) and area
efficiency (66− 93.05%, network dependent), especially for
ensemble systems. Further, the paper presents novel strategies
to quickly design high-performance architectures without
resource-intensive hyper-parameter sweep. Finally, the paper
defines the CrossNet family, designed for maximizing
crossbar-based performance (19.06× higher computational
efficiency and 4.16× improved power efficiency).

ACKNOWLEDGMENT
(The authors acknowledge the TU Wien Bibliothek for
Open Access Fee support through its Open Access Funding
Program.)

REFERENCES
[1] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and

P. Kuksa, ‘‘Natural language processing (almost) from scratch,’’ J. Mach.
Learn. Res., vol. 12 pp. 2493–2537, Aug. 2011.

[2] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for
image recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[3] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and
B. Catanzaro, ‘‘Megatron-LM: Trainingmulti-billion parameter language
models using model parallelism,’’ 2019, arXiv:1909.08053. [Online].
Available: http://arxiv.org/abs/1909.08053

[4] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, ‘‘Efficient processing
of deep neural networks: A tutorial and survey,’’ Proc. IEEE, vol. 105,
no. 12, pp. 2295–2329, Dec. 2017.

[5] J. Deng, ‘‘Imagenet: A large-scale hierarchical image database,’’ in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Dec. 2009, pp. 248–255.

[6] A. Boroumand, ‘‘Google workloads for consumer devices: Mitigating
data movement bottlenecks,’’ in Proc. Int. Conf. Archit. Support Program.
Lang. Oper. Syst., 2018, pp. 316–331.

[7] M. Shafique, M. Naseer, T. Theocharides, C. Kyrkou, O. Mutlu, L. Orosa,
and J. Choi, ‘‘Robust machine learning systems: Challenges,Current
trends, perspectives, and the road ahead,’’ IEEE Des. Test. Comput.,
vol. 37, no. 2, pp. 30–57, Apr. 2020.

[8] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks
for large-scale image recognition,’’ 2014, arXiv:1409.1556. [Online].
Available: http://arxiv.org/abs/1409.1556

[9] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 1–9.

[10] Y.-H. Chen, J. Emer, and V. Sze, ‘‘Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks,’’ in Proc.
ACM/IEEE 43rd Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2016,
pp. 367–379.

[11] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu,
N. Sun, and O. Temam, ‘‘DaDianNao: A machine-learning supercom-
puter,’’ in Proc. 47th Annu. IEEE/ACM Int. Symp. Microarchitecture,
Dec. 2014, pp. 609–622.

[12] A. Parashar, ‘‘Scnn: An accelerator for compressed-sparse convolutional
neural networks,’’ SIGARCH Comput. Archit. News, vol. 45, no. 2,
pp. 27–40, 2017.

[13] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, ‘‘EIE: Efficient inference engine on compressed deep neural
network,’’ in Proc. ACM/IEEE 43rd Annu. Int. Symp. Comput. Archit.
(ISCA), Jun. 2016, pp. 243–254.

[14] J. J. Yang, D. B. Strukov, and D. R. Stewart, ‘‘Memristive devices for
computing,’’ Nature Nanotechnol., vol. 8, no. 13, pp. 13–24, Dec. 2012,
doi: 10.1038%2Fnnano.2012.240.

[15] A. Shafiee, ‘‘ISAAC: A convolutional neural network accelerator with
in-situ analog arithmetic in crossbars,’’ ACM SIGARCH Comput. Archit.
News, vol. 44, no. 3, pp. 14–26, 2016.

[16] S. Yu, P.-Y. Chen, Y. Cao, L. Xia, Y. Wang, and H. Wu, ‘‘Scaling-up
resistive synaptic arrays for neuro-inspired architecture: Challenges and
prospect,’’ in IEDM Tech. Dig., Dec. 2015, pp. 3–17.

[17] S. Lee, S. Purushwalkam, M. Cogswell, D. Crandall, and D. Batra,
‘‘Why m heads are better than one: Training a diverse ensemble
of deep networks,’’ 2015, arXiv:1511.06314. [Online]. Available:
http://arxiv.org/abs/1511.06314

[18] F. Iandola, M. Moskewicz, S. Karayev, R. Girshick, T. Darrell,
and K. Keutzer, ‘‘DenseNet: Implementing efficient ConvNet
descriptor pyramids,’’ 2014, arXiv:1404.1869. [Online]. Available:
http://arxiv.org/abs/1404.1869

[19] S. Han, H. Mao, and W. J. Dally, ‘‘Deep compression: Com-
pressing deep neural networks with pruning, trained quantization
and Huffman coding,’’ 2015, arXiv:1510.00149. [Online]. Available:
http://arxiv.org/abs/1510.00149

[20] O. Mutlu, S. Ghose, J. Gómez-Luna, and R. Ausavarungnirun, ‘‘Pro-
cessing data where it makes sense: Enabling in-memory computation,’’
Microprocessors Microsyst., vol. 67, pp. 28–41, Jun. 2019.

[21] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, ‘‘Listen, attend and spell:
A neural network for large vocabulary conversational speech recogni-
tion,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP),
Mar. 2016, pp. 4960–4964.

[22] N. P. Jouppi, ‘‘In-datacenter performance analysis of a tensor processing
unit,’’ in Proc. ACM/IEEE 44th Annu. Int. Symp. Comput. Archit. (ISCA),
Jun. 2017, pp. 1–12.

[23] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training
of deep bidirectional transformers for language understanding,’’ 2018,
arXiv:1810.04805. [Online]. Available: http://arxiv.org/abs/1810.04805

[24] T. B. Brown, ‘‘Language models are few-shot learners,’’ 2020,
arXiv:2005.14165. [Online]. Available: http://arxiv.org/abs/2005.14165

229082 VOLUME xx, 2020

http://dx.doi.org/10.1038%2Fnnano.2012.240

M. A. Hanif et al.: Resistive Crossbar-Aware Neural Network Design and Optimization

[25] J. Albericio, ‘‘Bit-pragmatic deep neural network computing,’’
in Proc. 50th Annu. Int. Symp. Microarchit., 2017, pp. 1–5,
doi: 10.1145%2F3123939.3123982.

[26] A.Marchisio,M. A. Hanif,M.Martina, andM. Shafique, ‘‘PruNet: Class-
blind pruning method for deep neural networks,’’ in Proc. Int. Joint Conf.
Neural Netw. (IJCNN), Jul. 2018, pp. 1–8.

[27] B. Hassibi and D. G. Stork, ‘‘Second order derivatives for network
pruning: Optimal brain surgeon,’’ in Proc. Adv. neural Inf. Process. Syst.,
1993, pp. 164–171.

[28] Z. Yang, ‘‘Deep fried convnets,’’ in Proc. Int. Conf. Comput. Vis.,
Dec. 2015, pp. 1476–1483, doi: 10.1109%2Ficcv.2015.173.

[29] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, ‘‘Rethinking the
value of network pruning,’’ 2018, arXiv:1810.05270. [Online]. Available:
http://arxiv.org/abs/1810.05270

[30] M. Zhu and S. Gupta, ‘‘To prune, or not to prune: Exploring the efficacy
of pruning for model compression,’’ 2017, arXiv:1710.01878. [Online].
Available: http://arxiv.org/abs/1710.01878

[31] S. Han, ‘‘Learning both weights and connections for efficient neural
network,’’ in Proc. Adv. Neural Inf. Process. Syst., 2015, pp. 1135–1143.

[32] R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V. I. Morariu, X. Han, M. Gao,
C.-Y. Lin, and L. S. Davis, ‘‘NISP: Pruning networks using neuron impor-
tance score propagation,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., Jun. 2018, pp. 9194–9203, doi: 10.1109/CVPR.2018.00958.

[33] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and S. Mahlke,
‘‘Scalpel: Customizing DNN pruning to the underlying hardware
parallelism,’’ in Proc. 44th Annu. Int. Symp. Comput. Archit., Jun. 2017,
pp. 548–560.

[34] H. Mao, S. Han, J. Pool, W. Li, X. Liu, Y. Wang, and W. J. Dally,
‘‘Exploring the regularity of sparse structure in convolutional
neural networks,’’ 2017, arXiv:1705.08922. [Online]. Available:
http://arxiv.org/abs/1705.08922

[35] S. Anwar, K. Hwang, and W. Sung, ‘‘Structured pruning of deep
convolutional neural networks,’’ ACM J. Emerg. Technol. Comput. Syst.,
vol. 13, no. 3, pp. 1–18, Feb. 2017, doi: 10.1145%2F3005348.

[36] S. Lin, ‘‘Toward compact convnets via structure-sparsity regularized
filter pruning,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 2,
pp. 574–588, Feb. 2019, doi: 10.1109%2Ftnnls.2019.2906563.

[37] J. Lin, ‘‘Runtime neural pruning,’’ in Proc. Adv. Neural Inf. Process.
Syst., I. Guyon, Eds. Red Hook, NY, USA: Curran Associates, 2017,
pp. 2181–2191. [Online]. Available: http://papers.nips.cc/paper/6813-
runtime-neural-pruning.pdf

[38] Y. Gong, L. Liu, M. Yang, and L. Bourdev, ‘‘Compressing deep con-
volutional networks using vector quantization,’’ 2014, arXiv:1412.6115.
[Online]. Available: http://arxiv.org/abs/1412.6115

[39] H. D. Navone, P. F. Verdes, P. M. Granitto, and H. A. Ceccatto, ‘‘Selecting
diverse members of neural network ensembles,’’ in Proc. 6th Brazilian
Symp. Neural Netw., 1996, pp. 535–541.

[40] D. Ciresan, U. Meier, and J. Schmidhuber, ‘‘Multi-column deep neural
networks for image classification,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2012, pp. 3642–3649.

[41] F. Agostinelli,M. R. Anderson, andH. Lee, ‘‘Adaptivemulti-column deep
neural networks with application to robust image denoising,’’ in Proc.
Adv. Neural Inf. Process. Syst., 2013, pp. 1493–1501.

[42] G. Brown, ‘‘Diversity in neural network ensembles,’’ Ph.D. dissertation,
School Comput. Sci., Univ. Birmingham, Birmingham, U.K., Jan. 2004.

[43] A. Lazarevic and Z. Obradovic, ‘‘Effective pruning of neural network
classifier ensembles,’’ in Proc. Int. Joint Conf. Neural Netw. Process.,
2001, pp. 796–801.

[44] M. Su and M. Basu, ‘‘Gating improves neural network performance,’’ in
Proc. Int. Joint Conf. Neural Netw. Process., 2001, pp. 2159–2164.

[45] Z.-H. Zhou, Y. Jiang, Y.-B. Yang, and S.-F. Chen, ‘‘Lung cancer cell
identification based on artificial neural network ensembles,’’ Artif. Intell.
Med., vol. 24, no. 1, pp. 25–36, Jan. 2002.

[46] Z.-H. Zhou and Y. Jiang, ‘‘Medical diagnosis with c4.5 rule preceded by
artificial neural network ensemble,’’ IEEE Trans. Inf. Technol. Biomed.,
vol. 7, no. 1, pp. 37–42, Mar. 2003.

[47] J. Jiang, P. Trundle, and J. Ren, ‘‘Medical image analysis with
artificial neural networks,’’ Comput. Med. Imag. Graph., vol. 34, no. 8,
pp. 617–631, Dec. 2010.

[48] Q. K. Al-Shayea, ‘‘Artificial neural networks in medical diagnosis,’’ Int.
J. Comput. Sci., vol. 8, no. 2, pp. 150–154, 2011.

[49] P. Cunningham, J. Carney, and S. Jacob, ‘‘Stability problems with
artificial neural networks and the ensemble solution,’’ Artif. Intell. Med.,
vol. 20, no. 3, pp. 217–225, Nov. 2000.

[50] O. Mutlu, ‘‘Memory scaling: A systems architecture perspective,’’ in
Proc. 5th IEEE Int. Memory Workshop, May 2013, pp. 21–25.

[51] B. C. Lee, ‘‘Architecting phase change memory as a scalable dram
alternative,’’ in Proc. 36th Annu. Int. Symp. Comput. Archit., 2009,
pp. 1–5, doi: 10.1145%2F1555754.1555758.

[52] C. W. Smullen, V. Mohan, A. Nigam, S. Gurumurthi, and M. R. Stan,
‘‘Relaxing non-volatility for fast and energy-efficient STT-RAMcaches,’’
in Proc. IEEE 17th Int. Symp. High Perform. Comput. Archit., Feb. 2011,
pp. 50–61, doi: 10.1109/HPCA.2011.5749716.

[53] G. W. Burr, R. M. Shelby, S. Sidler, C. Nolfo, J. Jang, I. Boybat,
R. S. Shenoy, P. Narayanan, K. Virwani, E. U. Giacometti, B. N. Kurdi,
and H. Hwang, ‘‘Experimental demonstration and tolerancing of a large-
scale neural network (165 000 synapses) using phase-change memory
as the synaptic weight element,’’ IEEE Trans. Electron Devices, vol. 62,
no. 11, pp. 3498–3507, Nov. 2015, doi: 10.1109%2Fted.2015.2439635.

[54] M.-J. Lee, ‘‘A fast, high-endurance and scalable non-volatile memory
device made from asymmetric ta 2 o 5- x/tao 2- x bilayer structures,’’
Nature Mater., vol. 10, no. 8, p. 625, 2011.

[55] H. Dong Lee, ‘‘Integration of 4F2 selector-less crossbar array 2Mb
ReRAM based on transition metal oxides for high density memory
applications,’’ in Proc. Symp. VLSI Technol. (VLSIT), Jun. 2012,
pp. 151–152, doi: 10.1109/VLSIT.2012.6242506.

[56] H. Y. Lee, Y. S. Chen, P. S. Chen, P. Y. Gu, Y. Y. Hsu, S. M. Wang,
W. H. Liu, C. H. Tsai, S. S. Sheu, P. C. Chiang, W. P. Lin,
C. H. Lin, W. S. Chen, F. T. Chen, C. H. Lien, and M.-J. Tsai,
‘‘Evidence and solution of over-RESET problem for HfOX based
resistive memory with sub-ns switching speed and high endurance,’’
in Proc. Int. Electron Devices Meeting, Dec. 2010, pp. 19.7.1–19.7.4,
doi: 10.1109/IEDM.2010.5703395.

[57] L. Gao, P.-Y. Chen, and S. Yu, ‘‘Demonstration of convolution kernel
operation on resistive cross-point array,’’ IEEE Electron Device Lett.,
vol. 37, no. 7, pp. 870–873, Jul. 2016.

[58] B. Govoreanu, ‘‘10×00D7;10nm2 Hf/HfOx crossbar resistive RAMwith
excellent performance, reliability and low-energy operation,’’ in IEDM
Tech. Dig., Dec. 2011, pp. 6–31.

[59] M. Hu, ‘‘Dot-product engine for neuromorphic computing,’’
in Proc. 53rd Annu. Des. Autom. Conf., 2016, pp. 1–6,
doi: 10.1145%2F2897937.2898010.

[60] T.-Y. Liu, ‘‘A 130.7 mm2 2-layer 32-gb reram memory device in 24-nm
technology,’’ IEEE J. Solid-State Circuits, vol. 49, no. 1, pp. 140–153,
Aug. 2013.

[61] A. Kawahara, R. Azuma, Y. Ikeda, K. Kawai, Y. Katoh, Y. Hayakawa,
K. Tsuji, S. Yoneda, A. Himeno, K. Shimakawa, T. Takagi, T. Mikawa,
and K. Aono, ‘‘An 8 mb multi-layered cross-point ReRAM macro with
443 MB/s write throughput,’’ IEEE J. Solid-State Circuits, vol. 48, no. 1,
pp. 178–185, Jan. 2013.

[62] R. Fackenthal, M. Kitagawa, W. Otsuka, K. Prall, D. Mills, K. Tsutsui,
J. Javanifard, K. Tedrow, T. Tsushima, Y. Shibahara, and G. Hush,
‘‘19.7 a 16Gb ReRAM with 200MB/s write and 1GB/s read in 27nm
technology,’’ in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, Feb. 2014, pp. 338–339.

[63] S. Yu, Y. Wu, and H.-S. P. Wong, ‘‘Investigating the switching dynamics
and multilevel capability of bipolar metal oxide resistive switching
memory,’’ Appl. Phys. Lett., vol. 98, no. 10, Mar. 2011, Art. no. 103514,
doi: 10.1063%2F1.3564883.

[64] M. Abdullah Hanif, R. Vidya Wicaksana Putra, M. Tanvir, R. Hafi,
S. Rehman, and M. Shafique, ‘‘MPNA: A massively-parallel neural
array accelerator with dataflow optimization for convolutional
neural networks,’’ 2018, arXiv:1810.12910. [Online]. Available:
http://arxiv.org/abs/1810.12910

[65] M. A. Hanif, F. Khalid, and M. Shafique, ‘‘CANN: Curable approxima-
tions for high-performance deep neural network accelerators,’’ in Proc.
56th Annu. Des. Autom. Conf., Jun. 2019, pp. 1–6.

[66] B. Reagen, ‘‘Minerva,’’ ACM SIGARCH Comput. Archit. News, vol. 44,
no. 3, pp. 267–278, Jun. 2016, doi: 10.1145%2F3007787.3001165.

[67] C. Gao, ‘‘DeltaRNN: A power-efficient recurrent neural network
accelerator,’’ in Proc. Int. Symp. Field-Program. Gate Arrays, 2018,
pp. 21–30, doi: 10.1145%2F3174243.3174261.

[68] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.-J. Yoo, ‘‘UNPU:
A 50.6TOPS/W unified deep neural network accelerator with 1b-
to-16b fully-variable weight bit-precision,’’ in IEEE Int. Solid-State
Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2018, pp. 218–220,
doi: 10.1109/ISSCC.2018.8310262.

VOLUME xx, 2020 229083

http://dx.doi.org/10.1145%2F3123939.3123982
http://dx.doi.org/10.1109%2Ficcv.2015.173
http://dx.doi.org/10.1109/CVPR.2018.00958
http://dx.doi.org/10.1145%2F3005348
http://dx.doi.org/10.1109%2Ftnnls.2019.2906563
http://dx.doi.org/10.1145%2F1555754.1555758
http://dx.doi.org/10.1109/HPCA.2011.5749716
http://dx.doi.org/10.1109%2Fted.2015.2439635
http://dx.doi.org/10.1109/VLSIT.2012.6242506
http://dx.doi.org/10.1109/IEDM.2010.5703395
http://dx.doi.org/10.1145%2F2897937.2898010
http://dx.doi.org/10.1063%2F1.3564883
http://dx.doi.org/10.1145%2F3007787.3001165
http://dx.doi.org/10.1145%2F3174243.3174261
http://dx.doi.org/10.1109/ISSCC.2018.8310262

M. A. Hanif et al.: Resistive Crossbar-Aware Neural Network Design and Optimization

[69] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, ‘‘Cnvlutin: Ineffectual-neuron-free deep neural network
computing,’’ ACM SIGARCH Comput. Archit. News, vol. 44, no. 3,
pp. 1–13, Oct. 2016.

[70] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie,
‘‘PRIME: A novel Processing-in-Memory architecture for neural network
computation in ReRAM-based main memory,’’ in Proc. ACM/IEEE 43rd
Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2016, pp. 27–39.

[71] L. Song, X. Qian, H. Li, and Y. Chen, ‘‘PipeLayer: A pipelined ReRAM-
based accelerator for deep learning,’’ in Proc. IEEE Int. Symp. High
Perform. Comput. Archit. (HPCA), Feb. 2017, pp. 541–552.

[72] M. Cheng, ‘‘Time: A training-in-memory architecture for memristor-
based deep neural networks,’’ in Proc. 54th ACM/EDAC/IEEE Des.
Automat. Conf., Jun. 2017, pp. 1–6.

[73] H. Ji, L. Song, L. Jiang, H. Li, and Y. Chen, ‘‘ReCom: An efficient
resistive accelerator for compressed deep neural networks,’’ inProc. Des.,
Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2018, pp. 237–240.

[74] P. Wang, Y. Ji, C. Hong, Y. Lyu, D. Wang, and Y. Xie, ‘‘SNrram:
An efficient sparse neural network computation architecture based on
resistive random-access memory,’’ in Proc. 55th ACM/ESDA/IEEE Des.
Autom. Conf. (DAC), Jun. 2018, p. 106.

[75] A. Ankit, A. Sengupta, and K. Roy, ‘‘TraNNsformer: Neural network
transformation for memristive crossbar based neuromorphic system
design,’’ in Proc. IEEE/ACM Int. Conf. Comput.-Aided Des. (ICCAD),
Nov. 2017, pp. 533–540.

[76] X. Liu, Q. Wu, J. Yang, M. Mao, B. Liu, H. Li, Y. Chen, B. Li,
Y. Wang, H. Jiang, and M. Barnell, ‘‘RENO: A high-efficient reconfig-
urable neuromorphic computing accelerator design,’’ in Proc. 52nd Annu.
Des. Autom. Conf., 2015, pp. 1–6.

[77] L. Xia, ‘‘Technological exploration of RRAM crossbar array for matrix-
vector multiplication,’’ J. Comput. Sci. Technol., vol. 31, no. 1, pp. 3–19,
Jan. 2016, doi: 10.1007%2Fs11390-016-1608-8.

[78] M. S. Tarkov, ‘‘Mapping weight matrix of a neural network’s layer
onto memristor crossbar,’’ Opt. Memory Neural Netw., vol. 24, no. 2,
pp. 109–115, Apr. 2015, doi: 10.3103%2Fs1060992x15020125.

[79] D. Teney, P. Anderson, X. He, and A. V. D. Hengel, ‘‘Tips and tricks
for visual question answering: Learnings from the 2017 challenge,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 4223–4232.

[80] L. N. Smith and N. Topin, ‘‘Deep convolutional neural network
design patterns,’’ 2016, arXiv:1611.00847. [Online]. Available:
http://arxiv.org/abs/1611.00847

[81] W.Wen, ‘‘Learning structured sparsity in deep neural networks,’’ in Proc.
Adv. Neural Inf. Process. Syst., 2016, pp. 2074–2082.

[82] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, ‘‘Pruning filters
for efficient convnets,’’ in Proc. Int. Conf. Learn. Represent. (ICLR),
Apr. 2017.

[83] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, ‘‘Learning efficient
convolutional networks through network slimming,’’ in Proc. IEEE Int.
Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2736–2744.

[84] L. Kull, T. Toifl, M. Schmatz, P. Andrea Francese, C. Menolfi,
M. Brändli, M. Kossel, T. Morf, T. Meyer Andersen, and Y. Leblebici,
‘‘A 3.1 mW 8b 1.2 GS/s single-channel asynchronous SAR ADC with
alternate comparators for enhanced speed in 32 nm digital SOI CMOS,’’
IEEE J. Solid-State Circuits, vol. 48, no. 12, pp. 3049–3058, Dec. 2013,
doi: 10.1109/JSSC.2013.2279571.

[85] B. Murmann. (2016). Adc Performance Survey 1997-2016. [Online].
Available: http://www.stanford.edu/murmann/adcsurvey.html

[86] J.-H. Luo, J. Wu, and W. Lin, ‘‘ThiNet: A filter level pruning method for
deep neural network compression,’’ in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Oct. 2017, pp. 5068–5076, doi: 10.1109/ICCV.2017.541.

[87] V. Lebedev and V. Lempitsky, ‘‘Fast ConvNets using group-wise brain
damage,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 2554–2564.

[88] J. Wang, C. Xu, X. Yang, and J. M. Zurada, ‘‘A novel pruning
algorithm for smoothing feedforward neural networks based on group
lasso method,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 5,
pp. 2012–2024, 2018.

[89] T. Ochiai, S. Matsuda, H. Watanabe, and S. Katagiri, ‘‘Automatic node
selection for deep neural networks using group lasso regularization,’’
in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP),
Mar. 2017, pp. 5485–5489.

[90] C. D. Gilbert and T. N. Wiesel, ‘‘Receptive field dynamics in adult
primary visual cortex,’’ Nature, vol. 356, no. 6365, p. 150, 1992.

[91] C. Xu, D. Niu, N. Muralimanohar, R. Balasubramonian, T. Zhang, S. Yu,
and Y. Xie, ‘‘Overcoming the challenges of crossbar resistive memory
architectures,’’ in Proc. IEEE 21st Int. Symp. High Perform. Comput.
Archit. (HPCA), Feb. 2015, pp. 476–488.

[92] F. Alibart, L. Gao, B. D. Hoskins, and D. B. Strukov, ‘‘High precision
tuning of state for memristive devices by adaptable variation-tolerant
algorithm,’’ Nanotechnology, vol. 23, no. 7, pp. 075201-1–075201-20,
2012, doi: 10.1088%2F0957-4484%2F23%2F7%2F075201.

[93] M. Hu, ‘‘Hardware realization of BSB recall function using memristor
crossbar arrays,’’ in Proc. 49th Annu. Des. Autom. Conf., 2012,
pp. 498–503, doi: 10.1145%2F2228360.2228448.

[94] D. Niu, ‘‘Design trade-offs for high density cross-point resistive mem-
ory,’’ in Proc. Int. Symp. Low Power Electron. Des., 2012, pp. 209–214,
doi: 10.1145%2F2333660.2333712.

[95] Y. Guo, A. Yao, and Y. Chen, ‘‘Dynamic network surgery for efficient
DNNs,’’ in Proc. Adv. Neural Inf. Process. Syst., 2016, pp. 1379–1387.

[96] H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang, ‘‘Network trim-
ming: A data-driven neuron pruning approach towards efficient
deep architectures,’’ 2016, arXiv:1607.03250. [Online]. Available:
http://arxiv.org/abs/1607.03250

[97] X. Zhang, X. Zhou, M. Lin, and J. Sun, ‘‘ShuffleNet: An extremely
efficient convolutional neural network for mobile devices,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 6848–6856.

[98] G. Huang, S. Liu, L. V. D. Maaten, and K. Q. Weinberger, ‘‘Con-
denseNet: An efficient DenseNet using learned group convolutions,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 2752–2761.

[99] A. Gholami, K. Kwon, B. Wu, Z. Tai, X. Yue, P. Jin, S. Zhao, and
K. Keutzer, ‘‘SqueezeNext: hardware-aware neural network design,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Workshops
(CVPRW), Jun. 2018, pp. 1638–1647.

[100] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, ‘‘MobileNets: Efficient convolutional neural
networks for mobile vision applications,’’ 2017, arXiv:1704.04861.
[Online]. Available: http://arxiv.org/abs/1704.04861

[101] N. Ma, ‘‘Shufflenet V2: Practical guidelines for efficient CNN archi-
tecture design,’’ in The Eur. Conf. Comput. Vis. (ECCV), Sep. 2018,
pp. 116–131.

[102] J. Redmon. (2016). Darknet: Open Source Neural Networks in C.
[Online]. Available: http://pjreddie.com/darknet/

[103] C. Szegedy, ‘‘Inception-v4, inception-resnet and the impact of residual
connections on learning,’’ in Proc. AAAI Conf. Artif. Intell., 2017, pp. 1–5

[104] F. Chollet, ‘‘Xception: Deep learning with depthwise separable convo-
lutions,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 1251–1258.

[105] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, ‘‘Rethinking
the inception architecture for computer vision,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2818–2826.

[106] Y. Ioannou, D. Robertson, R. Cipolla, and A. Criminisi, ‘‘Deep roots:
Improving CNN efficiency with hierarchical filter groups,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 1231–1240.

[107] S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He, ‘‘Aggregated residual
transformations for deep neural networks,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 1492–1500.

[108] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, ‘‘SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <0.5MB model size,’’ 2016, arXiv:1602.07360.
[Online]. Available: http://arxiv.org/abs/1602.07360

[109] M. Lin, Q. Chen, and S. Yan, ‘‘Network in network,’’ 2013,
arXiv:1312.4400. [Online]. Available: http://arxiv.org/abs/1312.4400

[110] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, ‘‘MnasNet: Platform-aware neural architecture
search for mobile,’’ 2018, arXiv:1807.11626. [Online]. Available:
http://arxiv.org/abs/1807.11626

[111] Y. He, ‘‘Amc: Automl for model compression and acceleration on mobile
devices,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 784–800.

[112] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, ‘‘Playing atari with deep rein-
forcement learning,’’ 2013, arXiv:1312.5602. [Online]. Available:
http://arxiv.org/abs/1312.5602

[113] H. Cai, L. Zhu, and S. Han, ‘‘ProxylessNAS: Direct neural architecture
search on target task and hardware,’’ 2018, arXiv:1812.00332. [Online].
Available: http://arxiv.org/abs/1812.00332

229084 VOLUME xx, 2020

http://dx.doi.org/10.1007%2Fs11390-016-1608-8
http://dx.doi.org/10.3103%2Fs1060992x15020125
http://dx.doi.org/10.1109/JSSC.2013.2279571
http://dx.doi.org/10.1109/ICCV.2017.541
http://dx.doi.org/10.1088%2F0957-4484%2F23%2F7%2F075201
http://dx.doi.org/10.1145%2F2228360.2228448
http://dx.doi.org/10.1145%2F2333660.2333712

M. A. Hanif et al.: Resistive Crossbar-Aware Neural Network Design and Optimization

[114] S. Liu, Z. Du, J. Tao, D. Han, T. Luo, Y. Xie, Y. Chen, and
T. Chen, ‘‘Cambricon: An instruction set architecture for neural
networks,’’ in Proc. ACM/IEEE 43rd Annu. Int. Symp. Comput. Archit.
(ISCA), Jun. 2016, pp. 393–405.

[115] A. Ankit, I. E. Hajj, S. R. Chalamalasetti, G. Ndu, M. Foltin,
R. S. Williams, P. Faraboschi, W.-M.-W. Hwu, J. P. Strachan, K. Roy,
and D. S. Milojicic, ‘‘PUMA: A programmable ultra-efficient memristor-
based accelerator for machine learning inference,’’ in Proc. Int. Conf.
Archit. Support for Program. Lang. Oper. Syst., Apr. 2019, pp. 715–731.

[116] Y. Ji, Y. Zhang, W. Chen, and Y. Xie, ‘‘Bridge the gap between neural
networks and neuromorphic hardware with a neural network compiler,’’
in Proc. 23rd Int. Conf. Archit. Support Program. Lang. Oper. Syst.,
Mar. 2018, pp. 448–460.

[117] P. Yao, H. Wu, B. Gao, J. Tang, Q. Zhang, W. Zhang, J. J. Yang, and
H. Qian, ‘‘Fully hardware-implemented memristor convolutional neural
network,’’ Nature, vol. 577, no. 7792, pp. 641–646, Jan. 2020.

[118] A. Kumar,M. Das, V. Garg, B. S. Sengar,M. T. Htay, S. Kumar, A. Kranti,
and S. Mukherjee, ‘‘Forming-free high-endurance Al/ZnO/Al memristor
fabricated by dual ion beam sputtering,’’ Appl. Phys. Lett., vol. 110,
no. 25, Jun. 2017, Art. no. 253509.

[119] B. J. Murdoch, D. G. McCulloch, R. Ganesan, D. R. McKenzie,
M. M. M. Bilek, and J. G. Partridge, ‘‘Memristor and selector devices
fabricated from HfO2−x Nx,’’ Appl. Phys. Lett., vol. 108, no. 14,
Apr. 2016, Art. no. 143504.

[120] F. Budiman, ‘‘Recent progress on fabrication of memristor and transistor-
based neuromorphic devices for high signal processing speed with low
power consumption,’’ Jpn. J. Appl. Phys., vol. 57, nos. 2–3, 2018,
Art. no. 03EA06.

[121] S. Pi, ‘‘Memristor crossbar arrays with 6-nm half-pitch and 2-nm critical
dimension,’’ Nature Nanotechnol., vol. 14, no. 1, p. 35, 2019.

[122] H. Bao, N. Wang, H. Wu, Z. Song, and B. Bao, ‘‘Bi-stability in an
improved memristor-based third-order wien-bridge oscillator,’’ IETE
Tech. Rev., vol. 36, no. 2, pp. 109–116, Mar. 2019.

[123] Z. Wang, ‘‘Reinforcement learning with analogue memristor arrays,’’
Nature Electron., vol. 2, no. 3, p. 115, 2019.

[124] D. Zhang, J. Yang, D. Ye, and G. Hua, ‘‘Lq-nets: Learned quantization for
highly accurate and compact deep neural networks,’’ in Proc. Eur. Conf.
Comput. Vis. (ECCV), 2018, pp. 365–382.

[125] P. Wang, Q. Hu, Y. Zhang, C. Zhang, Y. Liu, and J. Cheng, ‘‘Two-
step quantization for low-bit neural networks,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 4376–4384.

[126] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, ‘‘Quantized convolutional
neural networks for mobile devices,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 4820–4828.

[127] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘Imagenet classification
with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[128] Y. Wu and K. He, ‘‘Group normalization,’’ in Proc. Eur. Conf. Comput.
Vis. (ECCV), Sep. 2018, pp. 3–19.

[129] S. Yu and H.-S.-P. Wong, ‘‘A phenomenological model for the reset
mechanism of metal oxide RRAM,’’ IEEE Electron Device Lett., vol. 31,
no. 12, pp. 1455–1457, Dec. 2010.

[130] S. Choi, Y. Yang, and W. Lu, ‘‘Random telegraph noise and resistance
switching analysis of oxide based resistive memory,’’ Nanoscale, vol. 6,
no. 1, pp. 400–404, May 2014, doi: 10.1039%2Fc3nr05016e.

MUHAMMAD ABDULLAH HANIF (Graduate
Student Member, IEEE) received the B.Sc. degree
in electronic engineering fromGhulam IshaqKhan
Institute of Engineering Sciences and Technology
(GIKI), Pakistan, and theM.Sc. degree in electrical
engineeringwith a specialization in digital systems
and signal processing (DSSP) from the School
of Electrical Engineering and Computer Science
(SEECS), National University of Sciences and
Technology (NUST), Islamabad, Pakistan. He is

currently pursuing the Ph.D. degree with the Faculty of Informatics,
Technische Universität Wien (TU Wien), Vienna, Austria. In the past,
he worked as a Research Associate with the Vision Processing (VISpro) Lab,
Information Technology University (ITU), Pakistan, and as a Lab Engineer
with GIKI. He was a recipient of President’s Gold Medal for his outstanding
academic performance during his M.S. degree.

ADITYA MANGLIK (Student Member, IEEE)
received the B.E. degree (Hons.) in electrical and
electronics engineering from the Birla Institute of
Technology& Sciences, Pilani, India. His research
interests include design and critical analysis
of high-performance computing (HPC) systems,
focusing on exascale computation platforms, and
next-generation workloads, such as ubiquitous
machine learning and bio-informatics.

MUHAMMAD SHAFIQUE (Senior Member,
IEEE) received the Ph.D. degree in computer
science from the Karlsruhe Institute of Technology
(KIT), Germany, in 2011.

Afterwards, he established and led a highly
recognized research group at KIT for several
years as well as conducted impactful research
and development activities in Pakistan. In Octo-
ber 2016, he joined the Institute of Computer
Engineering, Faculty of Informatics, Technische

Universität Wien (TU Wien), Vienna, Austria, as a Full Professor of
Computer Architecture and Robust, Energy-Efficient Technologies. Since
September 2020, he has been with the Division of Engineering, New York
University Abu Dhabi (NYUAD), United Arab Emirates. He is currently
a Global Network Faculty with the NYU Tandon School of Engineering,
USA. His research interests include brain-inspired computing, AI &machine
learning hardware and system-level design, energy-efficient systems, robust
computing, hardware security, emerging technologies, FPGAs, MPSoCs,
and embedded systems. His research interests also include cross-layer
analysis, modeling, design, and optimization of computing and memory
systems. The researched technologies and tools are deployed in application
use cases from the Internet-of-Things (IoT), smart cyber-physical systems
(CPS), and ICT for development (ICT4D) domains. He has given several
keynotes, invited talks, and tutorials, as well as organized many special
sessions at premier venues. He has served as the PC chair, a track chair,
and a PC member for several prestigious IEEE/ACM conferences. He holds
one U.S. patent has (co)authored six books, more than book chapters, and
over 200 articles in premier journals and conferences. He received the
2015 ACM/SIGDA Outstanding New Faculty Award, the AI 2000 Chip
Technology Most Influential Scholar Award in 2020, six gold medals, and
several best paper awards and nominations at prestigious conferences.

VOLUME xx, 2020 229085

http://dx.doi.org/10.1039%2Fc3nr05016e

