
Adaptive Gait Generation for Hexapod
Robot using Genetic Algorithm

Aditya Manglik, Kunal Gupta

Department of Electrical and Electronics Engineering
Birla Institute of Technology And Science

Pilani, Rajasthan 333-031

Dr. Surekha Bhanot
Professor

Department of Electrical and Electronics Engineering
Birla Institute of Technology And Science

Pilani, Rajasthan 333-031

Abstract— Animals display naturally robust locomotion de-
signs which enable them to move on rugged terrains and even
adapt to injuries. Most of the robots do not possess such
robustness and are rendered useless if they get structurally
damaged. In this paper, it is shown that such adapting ability
can be introduced in robot’s locomotion, if damaged, by evolving
optimal gaits through genetic algorithm (GA). A hexapod robot
simulation was used to test the gaits generated by GA. Simulation
results have proven that the evolved gait enables a hexapod
to move effectively with one leg damaged. This technique will
increase the reliability and effectiveness of autonomous robots in
areas hostile to humans.

Keywords- gait generation, hexapod, genetic algorithm,
damage recovery, adaptive gait

I. INTRODUCTION

Autonomous robots are involved in a wide range of activities
in homes, offices, manufacturing industries etc. They are often
used in areas hostile to humans such as outer space, deep
oceans, nuclear power plants, sewage treatment plants, disaster
struck areas etc. A robot’s locomotion design refers to its
ability to navigate the surroundings. Locomotion designs exist
in a large variety, from wheels to belts and even limbs. Limbed
robots have the ability to navigate areas which are deprived of
smooth surfaces. Rough, rocky, steep and hostile terrains make
their use inevitable owing to this unique locomotion design.
However, these robots tend to fail miserably if they suffer some
structural damage due to a mishap. Nature has found ways to
adapt even in extreme cases of limb loss. Animals like cats,
dogs miraculously adapt to a new walking mechanism, almost
instantaneously after damage to their limb(s). On the contrary,
their mechanical imitations i.e. robots are mostly useless due
to inability to adapt to damage. This flaw is design based and
potentially causes huge losses to the industry annually.
For adaptation to limb loss, the robot must develop a new gait.
Generating a gait that ensures stability and freedom to move
in arbitrary directions is a complex optimization problem,
as large amount of control and co-ordination among legs is
required.
Genetic Algorithm mimics the principles of natural evolution
and survival of the fittest. It involves a random population

978-1-4673-8587-9/16/$31.00 2016 IEEE

where each member of the population represents a possible
solution. The population members are subsequently crossbred
among best solutions which are then passed to the next
generation. Mutations enable better solutions to evolve from
existing solutions by introducing random changes in them,
increasing the search space. The process of cross breeding
continues iteratively till changes in population members be-
come insignificant over a large number of generations.
This paper describes the use of GA to generate gait for a
hexapod robot, using each member of population as a possible
gait. Conditions for gait generation is structural damage to
hexapod which has rendered a leg useless. Consequently,
a new gait must be generated for the robot to be able to
walk with remaining undamaged legs.The mathematical model
used for simulation and GA calculations has been built using
MATLAB. The best possible gait generated by the simulation
is then applied to a real hexapod for testing.
Section II on hardware model briefly discusses the physical
hexapod. Details about the mathematical model are given in
section III. Section IV describes the way gait for the hexapod is
defined and is subsequently generated in section V. Section VI
and VII discuss the results obtained and concluding remarks
along with avenues for further study.

Fig. 1. Natural Adaptive Gait Generation

II. HARDWARE MODEL

The hardware model has been designed using
SolidWorks version 2014 as shown in figure 2. The robot has
six legs attached to the body in a hexagonal fashion, each leg
possessing three joints for movement. These three joints have
been named as ‘Pelvis, Knee and Feet’. The pelvis is attached
to hip, hip attached to knee via femur (bone) and knee attached
to feet via tibia (bone). Motion of pelvis motors (attached
between top of leg and body), allows the robot to move the leg
in forward direction. Motion of hip and knee motors provides
upwards and downwards motion. This configuration results
in three Degrees of Freedom(DOF), allowing the hexapod to
move freely in a 3-D space. Servo motors have been used to
move joints in required directions. One motor represents each
joint, totaling 6 X 3 = 18 motors.

Fig. 2. Solidworks model of hardware robot

Motor control is done via an Arduino Mega board. The
Arduino is interfaced with MATLAB for implementation of
GA. Physical limitations imposed by high trial time for
each iteration and large number of iterations made online
implementation of GA unfeasible. Therefore, gait generation is
initially simulated using a MATLAB model. The final evolved
gaits are implemented on the hexapod.

Fig. 3. Simulated Leg

III. MATHEMATICAL MODEL

MATLAB has been used to simulate the mathematical
model of the hexapod. The mathematical model is built upon
kinematic equations for the hexapod and does not consider
more complex dynamics of motion. Due to this limitation,
actions such as jumping cannot be simulated. Yaw, pitch and
roll of the hexapod’s body are also ignored. Consequently,
center of the hexapod stays at constant height throughout
motion. The model assumes following condition for stability
of robot: Projection on ground of center of gravity of the robot
must always lie inside the polygon defined by feet of legs
currently on ground. Else, the robot will become unstable.
Simulation has been done by taking into account angles and
co-ordinates of all joints, along with co-ordinates of feet.
The center of hexapod is equidistant from all pelvis motors.
The forward direction of motion coincides with the positive
x-axis of a right handed co-ordinate system. Simulated leg
of the model is shown in figure 3. The parameters used in
mathematical modelling for ithleg are described as follows-

A. Parameters

δi = Angle made by each Pelvis motor

with x− axis (1)
φi = Smaller angle made by hip motor

with y − axis (2)
τi = Complement of angle made by hip motor

with z − axis (3)
θi = Angle between tibia and thigh (4)
hi = Length of Hip (5)
ti = Length of Thigh (6)
bi = Length of T ibia (7)
li = Distance between Pelvis and center of

Robot (8)

δi, li, hi, ti, bi are constant.

xcyc
zc

 are the co− ordinates of center of robot. (9)

B. Equations

Equations for motion of Pelvis (xpi, ypi, zpi) :

xpi = xc + licos(δi) (10)
ypi = yc + lisin(δi) (11)
zpi = zc (12)

Motion due to Pelvis allows the robot to move entire leg
forward and backward.

Equations for motion of Hips (xhi, yhi, zhi) :

xhi = xpi + hisin(φi) (13)
yhi = ypi + hicos(φi) (14)
zhi = zpi (15)

Motion due to Hip allows the robot to move thigh upwards
and downwards.

Equations for motion of Legs (xki, yki, zki) :

xki = xhi + ticos(τi) sin(φi) (16)
yki = yhi + tisin(τi) cos(φi) (17)
zki = zhi + tisin(τi) (18)

Motion due to Legs allows the robot to move the tibia
upwards and downwards.

Equations for motion of feet (xfi, yfi, zfi) :

xfi = xki + bisin(θi) sin(φi) (19)
yfi = yki + bisin(θi) cos(φi) (20)
zfi = zki − bisin(τi) (21)

Motion of feet describe the co-ordinates of foot on the
ground for each leg.
In order to move the robot, the translation of feet on the
ground has been taken into account.∆xc

∆yc
∆zc

 = α

6∑
1

xfi(final)− xfi(initial)yfi(final)− yfi(initial)
zfi(final)− zfi(initial)

 (22)

These equations determine the displacement of center
co-ordinates from their initial values. The displacement is
used to calculate final values of center of base.
α ε (0, 0.5] is a normalizing constant. The model thus
generated is shown in figure 4.

Fig. 4. Mathematical model simulation

IV. DESCRIPTION OF GAIT

Gait (walking mechanism) is defined as a sequence of
consequent steps where every following step is a derivative
of the state of legs from the previous step. Development of
gaits for a hexapod requires control and co-ordination of six
simultaneously moving legs. Every gait must have an initial
step. After the initial step is defined, successive steps are
derived from their respective preceding steps. They are
looped in order to minimize the complexity of computation
tasks and provide continuous transfer from last step to first
step without compromising stability. State of each leg is
defined in terms of 3 angles-

State of legi =

φiτi
θi

 (23)

Each step is defined as a row vector of six states, one state
for each of hexapod’s six legs.

Step =
[
State of leg1 . . . State of leg6

]
(24)

State values have been quantized in order to simplify the
process of gait generation and minimize the possibility of
generation of unstable states. Every leg can have five
possible states. These include three support state values and
two transition state values. Support states include those in
which the leg touches the ground and supports weight of the
robot. Transfer states include those in which the leg is lifted
and is being moved to a new position.
State values have been defined as:

• DR - (Down Rear) leg is on the ground in backward
position, support state

• DC - (Down Center) leg is on the ground in central
position, support state

• DF - (Down Forward) leg is on the ground in forward
position, support state

• UF - (Up Forward) leg is in the air in forward position,
transfer state

• UR - (Up Rear) leg is in the air in rearward position,
transfer state

Increment in states follows the cycle as shown in figure 5.

Fig. 5. Order of Transfer of States

Each gait is initialized from step 1 having all state values set
to DC. Step 2 involves transition from DC to UF. Step 3
onwards, gait generation follows the sequence:

UF → DF → DC → DR→ UR→ UF

At every state increment, stability of transition with respect
to prior state is checked. This process is followed for all
steps of gait generation.

Step 1 =
[
State of leg1 . . . State of leg6

]
Step 2 =

[
State of leg1 + 1 . . . State of leg6 + 1

]
...

Step N =
[
State of leg1 +N . . . State of leg6 +N

]
Gait is defined as a column vector of N steps where each
step is derived from the previous step.

Gait =

 Step 1
...

Step N

 (25)

Thus, a gait represents a [3N x 6] matrix, N being the
number of steps. GA is used to determine these 18N
elements to optimize the walking mechanism of the spider.A
gait having 2 steps is given below for moving legs 1 and 6
from DC to UF. Each value in the matrix represents a
specific angle for servo motor as per Equations (23) & (24).
Consequently, one step has 18 values for moving the 18
motors of hexapod.

gait =

00 00 00 00 00 00
60 60 60 60 60 60
30 30 30 30 30 30
00 00 30 00 00 30
60 60 60 60 60 60
30 30 45 30 30 45

Experimentation with the hardware robot has been used to
determine the optimal value of N, which has been found to
be twelve.

V. APPLICATION OF GENETIC ALGORITHM FOR GAIT
GENERATION

Basic description of GA is given in figure 6. Initially a
random population of individuals, each representing a gait, is
created. Each gait’s performance is simulated in MATLAB
and its fitness is evaluated on the following criteria:

1) Forward displacement
2) Sideways displacement

The above two factors are normalized with respect to
number of steps in gait.

• Greater forward displacement, higher fitness value.
• Greater sideways displacement, lesser fitness value.

Fig. 6. Description of genetic algorithm for gait generation

A. Crossover

To get a stable gait as an offspring of two parent gaits, the
method of Vertical One-Sided Transfer(VOT) is employed.
In this method, the state values of randomly chosen legs are
swapped with respective state values from legs of second
gait. Swapping of state values is done throughout the gait,
resulting in breeding of two parents to produce an offspring.

Since the offspring gait is likely to be unstable, a stability
check is required. The offspring is passed to the next
population only if it has a better fitness value than each of
its parent gaits, otherwise the parent gait with greater fitness
values is passed to the next generation. This is done to
increase the convergence of GA and reduce the number of
iterations.
Crossover algorithm in pseudo-code form is given below.
The stable check function checks each step of the gait with
regard to the stability condition specified in Section III. The
function returns a value of zero for an unstable gait and a
value of one for a stable gait.

Title: Crossover Algorithm
Input:Parent gaits, (gait1 and gait2)
Output: Crossed over gait3

initialization;
stability=0;
while (stability = 0) do

offspring = crossover of gait1 , gait2 ;
% Using VOT
stability = stable check(offspring);

end
if (fitness(offspring) > fitness(gait1)) and
(fitness(offspring) > fitness(gait2)) then

gait3 = offspring ;
else

if (fitness(gait1) > fitness(gait2)) then
gait3 = gait1 ;

else
gait3 = gait2 ;

end
end
return gait3 ;

B. Mutation

In order to keep the algorithm from getting stuck in local
optima and to expand the search space, mutations are
required. To implement mutation in a gait, step slicing
method is used. Gait is sliced at a random step and part of
gait before the sliced step is retained. Other part is obtained
by randomly incrementing state values of each leg after the
sliced step, till the required number of steps in gait are
reached. This mutated gait is passed on to the next
population only if it is stable and possesses a better fitness
value as compared to the initial gait. Pseudo-code description
of the mutation algorithm is given below.

C. Gait generation for damaged robot

Structural damage to robot is modelled in simulation as a leg
which is unresponsive to any command. Hence, state of the
damaged leg does not change at any step in gait. However,
the damaged leg may be used for supporting the body.
Normal motion is affected because of the damaged leg, as
the robot tends to deviate sideways. Since one of the legs is

Title: Mutation Algorithm
Input:Gait to be mutated, gait
Output: Mutated gait, mutated gait

initialization;
stability=0;
while (stability = 0) do

mutation = mutation of gait;
%Using step slicing method
stability = stable check(mutation);

end
if (fitness(mutation) > fitness(gait)) then

mutated gait = mutation ;
else

mutated gait = gait ;
end
return mutated gait ;

not contributing to the forward motion, forward displacement
is also reduced.
GA is again applied to the simulation model after
introducing structural damage. Results thus obtained have
been discussed in the next section.

VI. RESULTS

The objective of this research has been to demonstrate that
GA can generate stable gaits even when the robot is
structurally damaged. To obtain the best possible gaits, a
number of combinations for population size and number of
generations have been tested. Results corresponding to
population size of 50 and number of generations as 40 have
shown promising results.

Fig. 7. Initial vs final evolved population

Figure 7 compares fitness values of initial and final
evolved population. Blue particles represent randomly
generated initial population, while the red particles show
evolved population after application of GA. Evolved
populations consistently displayed very high fitness values.
This shows that GA is successful in maximizing the fitness
of gait.

Fig. 8. Comparison of initial and final evolved gaits

Figure 8 compares the trajectories of initial and
final(evolved) gaits for undamaged robot. The final evolved
gait traverses 2.64 times the first generation gait’s distance
for the same number steps. Sideways deviation for the same
distance travelled is reduced by 62.5% for the evolved gait.

Fig. 9. Path Curve for initial and evolved gaits of damaged robot

Figure 9 compares trajectories for initial and evolved
gaits of the damaged robot. Initially when damage is
inflicted to forward leg, the robot deviates sideways by upto
5 units for 12 units of forward motion, resulting in poor
performance. After evolution, the robot learns to use its
undamaged legs to counter the sideways deviation caused by
damaged leg.

Figure 10 compares the trajectories of final evolved gaits
for damaged and undamaged robot. The path covered by
evolved gait for damaged robot differs sideways by 17% and

Fig. 10. Comparison between damaged and undamaged gaits(evolved)

forwards by 12% from that of the undamaged robot,
confirming that the robot has indeed adapted to motion with
damaged leg.

VII. CONCLUSIONS

The algorithm is successful in evolving gaits to adapt to
physical damage and performs close to the undamaged robot.
Best gaits evolved from the MATLAB simulation have been
applied to real hexapod and some inefficiencies were
observed. This is due to lack of support for friction, fatigue
due to constant usage and impulsive motion, in the MATLAB
model. Future research may be done in improving the model
and simulation conditions to minimize these inefficiencies.

REFERENCES

[1] C. Darwin. Origin of Species, London, UK: John Murray, 1859.
[2] F. Seljanko, Hexapod walking robot Gait Generation using Genetic

Gravitational Hybrid algorithm, 15th International Conference on Ad-
vanced Robotocs, 2011.

[3] Spencer, G,1994. Automatic Generation of Programs for Crawling and
Walking, Advances in Genetic Programming. (pp. 335-353) K. Kinnear,
Jr. (ed.), Cambridge, MA: MIT.

[4] Gary B. Parker, William T. Tarimo, and Michael Cantor. Quadruped
Gait Learning Using Cyclic Genetic Algorithm, in Proceedings of 2011
IEEE Congress on Evolutionary Computation (CEC 2011).

[5] J. Currey,M., Beckerleg, J. Collins. Software Evolution Of A
Hexapod Robot Walking Gait, 2008. 15th International Conference on
Mechatronics and Machine Vision in Practice, 2008. M2VIP, pp. 305 -
310.

[6] V. Dturr, J. Schmitz, and H. Cruse. Behaviour-based modelling
of hexapod locomotion: Linking biology and technical application,
Arthropod Structure & Development, vol. 33, pp. 237-250, 2004.

[7] G. Parker, D. Braun, and I. Cyliax. Evolving Hexapod Gaits Using
Cyclic Genetic Algorithms, New London, CT: Indiana University.

[8] Mahdavi and P. Bentley. An evolutionary approach to damage recovery
of robot motion with muscles, Advances in Articial Life, pages 248255,
2003.

[9] J.C. Bongard, H. Lipson. Automated damage diagnosis and recovery
for remote robotics

