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Mass-produced commodity DRAM is the preferred choice
of main memory for a broad range of computing systems due
to its favorable cost-per-bit. However, today’s systems have
diverse system-speci�c needs (e.g., performance, energy, relia-
bility) that are di�cult to address using one-size-�ts-all general-
purpose DRAM. Unfortunately, although system designers can
theoretically adapt commodity DRAM chips to meet their par-
ticular design goals (e.g., by exploiting slack in access tim-
ings to improve performance, or implementing system-level
RowHammer mitigations), we observe that designers today
lack the necessary insight into commodity DRAM chips’ relia-
bility characteristics to implement these techniques in practice.
In this work, we make a case for DRAM manufacturers to pro-
vide increased transparency into simple device characteristics
(e.g., internal row address mapping, cell array organization)
that a�ect consumer-visible reliability. Doing so has negligible
impact on manufacturers given that these characteristics can
be reverse-engineered using known techniques; however, it has
signi�cant bene�t for system designers, who can then make
informed decisions to be�er adapt commodity DRAM to meet
modern systems’ needs while preserving its cost advantages.

To support our argument, we study four ways that system de-
signers can adapt commodity DRAM chips to system-speci�c
design goals: (1) improving DRAM reliability; (2) reducing
DRAM refresh overheads; (3) reducing DRAM access latency;
and (4) defending against RowHammer a�acks. We observe
that adopting solutions for any of the four goals requires system
designers to make assumptions about a DRAM chip’s reliability
characteristics. �ese assumptions discourage system design-
ers from using such solutions in practice due to the di�culty
of both making and relying upon the assumption.

We identify DRAM standards as the root of the problem: cur-
rent standards rigidly enforce a �xed operating point with no
speci�cations for how a system designer might explore alterna-
tive operating points. To overcome this problem, we introduce
a two-step approach that reevaluates DRAM standards with a
focus on transparency of reliability characteristics so that sys-
tem designers are encouraged to make the most of commodity
DRAM technology for both current and future DRAM chips.

1. Introduction
Dynamic Random Access Memory (DRAM) [1–6] is the

dominant choice for main memory across a broad range of
computing systems because of its high capacity at low cost
relative to other viable main memory technologies. Building
e�cient DRAM chips requires substantially di�erent manu-
facturing processes relative to standard CMOS fabrication [7],
so DRAM is typically designed and manufactured separately
from other system components. In this way, system designers

who purchase, test, and/or integrate commodity DRAM chips
(e.g., cloud system designers, processor and system-on-a-chip
(SoC) architects, memory module designers, test and validation
engineers) are free to focus on the particular challenges of the
systems they work on instead of dealing with the nuances of
building low-cost, high-performance DRAM.

To ensure that system designers can integrate commodity
DRAM chips from any manufacturer, the DRAM interface and
operating characteristics have long been standardized by the
JEDEC consortium [8]. JEDEC maintains a limited set of DRAM
standards for commodity DRAM chips with di�erent target
applications, e.g., general-purpose DDRn [9–11], bandwidth-
optimized HBMn [12, 13], mobile-oriented LPDDRn [14, 15],
graphics-oriented GDDRn [16, 17]. Given that DRAM designs
are heavily constrained by DRAM standards, manufacturers
generally seek pro�tability through economies of scale [18–21]:
they mass produce standards-compliant DRAM chips using
highly-optimized manufacturing processes. High-volume pro-
duction amortizes manufacturing costs and increases per-chip
pro�t margins. As such, DRAM manufacturers conservatively
regard design- and manufacturing-related information as sen-
sitive [22–25], revealing only what DRAM standards require.

To maintain their competitive advantage in cost-per-
capacity, DRAM manufacturers continually improve storage
densities across successive product generations while minimiz-
ing fabrication costs (e.g., minimizing chip area, maximizing
yield). �is requires a careful balance between aggressively
scaling physical feature sizes, continually optimizing circuit
designs to reduce area consumption, and mitigating reliability
issues that arise with process technology shrinkage [22,26–31].
Unfortunately, focusing primarily on storage density forces
DRAM manufacturers to sacri�ce potential improvements in
other metrics of interest, such as performance, energy, etc.
Even if process technology shrinkage naturally provides gains
in these other metrics (e.g., by reducing circuit latencies with
smaller circuit elements), manufacturers typically adjust their
designs to exchange these gains for additional storage density
(e.g., by building larger array sizes that o�set any reductions
in access latency). As manufacturers juggle the complex trade-
o�s in chip design and manufacturing to maintain market
competitiveness, DRAM as a whole exhibits slow generational
improvements in key areas, such as access latency and power
consumption [32–34].

Figure 1 provides a best-e�ort survey showing how
manufacturer-reported values for four key DRAM operating
timings and per-chip storage capacity (all shown in log scale)
have evolved over time. We extract these data values from 58
publicly-available DRAM chip datasheets from across 19 di�er-
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ent DRAM manufacturers with datasheet publication dates be-
tween 1970 and 2021. �is data encompasses DRAM chips from
both asynchronous (e.g., page mode, extended data out) and
synchronous (e.g., SDRAM, DDRn) DRAM chips. Appendix A
describes our data collection methodology in further detail,
and Appendix B provides an overview of our dataset, which is
publicly available on GitHub [35].
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Figure 1: Semi-log plot showing the evolution of keyDRAMac-
cess timings (le�) and per-chip storage capacity (right)i across
each 5-year period of time.

iJEDEC-standardized parameters [11] found in DRAM chip datasheets:
Parameter De�nition
tRCD minimum row activation to column operation delay
CAS Latency read operation to data access latency
tRAS minimum row activation to precharge delay
tRC minimum delay between accesses to di�erent rows

We observe a clear trend that newer DRAM chips exhibit im-
provements in all four timing parameters and storage capacity.
However, none of the four timings have improved signi�cantly
in the last two decades. For example, the median tRCD/CAS
Latency/tRAS/tRC reduced by 2.66/3.11/2.89/2.89% per year on
average between 1970 and 2000, but only 0.81/0.97/1.33/1.53%
between 2000 and 2015.1 In contrast, storage capacity improved
relatively consistently with an exponential growth factor of
0.328 per year (0.341 for 1970-2000 and 0.278 for 2000-2020)
across the entire history of DRAM technology. �is data is con-
sistent with similar studies done in prior work [32, 33, 36–43],
showing that commodity DRAM manufacturers have priori-
tized storage capacity over access latency in recent years.

Unfortunately, prioritizing storage density does not always
align with the increasingly diverse needs of modern computing
systems. �ese needs change as systems continuously evolve,
so there is no single target metric (e.g., storage capacity) that
suits all DRAM-based systems. Instead, each system’s design
goals di�er based on factors such as cost, complexity, appli-
cations, etc. For example, storage-focused data centers (e.g.,
content delivery network nodes) may require high-reliability
memory while compute-focused clusters may optimize for per-
formance with low-latency memory. Unfortunately, system
designers today are limited to a narrow range of commodity
DRAM products,2 that e�ectively restrict design freedom and
limit the peak potential of DRAM-based systems.

1We report 2015 instead of 2020 because 2020 shows a regression in CAS
latency due to �rst-generation DDR5 chips, which we believe is not represen-
tative because of its immature technology.

2Custom DRAM chips (e.g., latency-optimized [44, 45], high-reliability [46,
47]) and target-speci�c chips (e.g., LPDDRn [14, 15], GDDRn [16, 17]) sacri�ce
the cost advantages of high-volume general-purpose commodity DRAM [20].

To address this disparity, system designers have long since
developed techniques for adapting unmodi�ed commodity
DRAM chips to varying system requirements. Examples
include: (1) actively identifying and/or mitigating errors
to improve reliability [48–65]; (2) exploiting available tim-
ing [39, 66–72] and voltage [73–75] margins to reduce mem-
ory access latency, power consumption, decrease refresh over-
heads [22, 76–78, 78–82]; and (3) mitigating unwanted DRAM
data persistence [83–85] and read-disturb problems [86–90].
Section 2.1 discusses these proposals in greater detail to mo-
tivate the need to adapt commodity DRAM to diverse yet ag-
gressive design targets.

However, these proposals are largely theoretical ideas or
proofs-of-concept based on performance and reliability charac-
teristics that are assumed, inferred, or reverse-engineered from a
limited set of observations and DRAM products (e.g., in-house
experimental studies) without DRAM manufacturers’ support.
�erefore, adopting such proposals in a consumer-facing prod-
uct requires a system designer to weigh the bene�ts of en-
hancing DRAM (e.g., improving performance, security, etc.)
against both: (1) risks (e.g., failures in the �eld) associated with
potentially violating manufacturer-recommended operating
conditions and (2) limitations due to compatibility with only
a subset of all commodity DRAM products (e.g., only those
that have been accurately reverse-engineered). �ese risks
and limitations are a serious barrier to adoption, especially for
small-scale designers who may have limited headroom and
expertise for exploring unconventional designs.

In this work, we argue that the lack of transparency concern-
ing DRAM reliability characteristics is ultimately responsible
for con�ning system designers to conventional, speci�cation-
constrained designs. For example, safely improving DRAM
access latency by adjusting operating timings requires under-
standing the possible failure modes resulting from using non-
standard timings (discussed further in Section 6). �is is be-
cause selecting suitable operating timings requires the system
designer to estimate the reliability impact of the new timings,
which in turn requires reliability modeling or extensive testing
under worst-case operating conditions. Unfortunately, obtain-
ing the information necessary to make these estimates (e.g.,
error models, worst-case testing parameters) is di�cult, if not
impossible,3 without transparency from DRAM manufacturers.
�is transparency does not exist today, even through private
agreements for high-volume consumers who have signi�cant
stake in the DRAM industry [91–93]. In general, without the
ability to understand how di�erent design choices can impact
DRAM reliability (e.g., error rates), system designers are dis-
couraged from deploying or even exploring alternative designs.

To understand the source of the transparency problem, we
conduct four case studies throughout Sections 4–7 that each
examine a key system design concern for commodity DRAM
chips: (1) reliability; (2) refresh overheads; (3) access latency;
and (4) the RowHammer security vulnerability. For each case
study, we explain how system designers are forced to make

3For all but the largest customers capable of independently conducting
rigorous post-manufacturing testing.
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assumptions about DRAM reliability in order to address these
concerns without breaking design independence with DRAM
manufacturers, but those very assumptions limit the practi-
cality and scope of the solution. We then argue that DRAM
standards lie at the heart of the problem because they do not
adequately address the aforementioned DRAM reliability con-
cerns. To overcome this reliance on assumptions, we show
that incorporating speci�cations for consumer-visible DRAM
reliability characteristics (e.g., industry-validated error models
and testing techniques) into DRAM standards alleviates the
problem and allows system designers to be�er adapt commod-
ity DRAM to their particular needs without requiring changes
to how DRAM manufacturers design and build commodity
DRAM.

We propose incorporating information transparency into
DRAM standards using a two-step approach involving all
DRAM stakeholders, including consumers and manufactur-
ers. In Step 1, for DRAM chips already in the �eld, we seek the
release of basic information about DRAM chips that consumers
can use to be�er understand the chips’ reliability characteris-
tics. Section 9.1 details examples of possible information to re-
lease, including (1) basic microarchitectural characteristics (e.g.,
organization of physical rows, sizes of internal storage arrays)
that can be reverse-engineered using existing techniques with
access to appropriate testing infrastructure [39, 67, 68, 94–100]
and (2) industry-recommended testing best practices (e.g., test
pa�erns for key error mechanisms). We believe that this infor-
mation can be released through a combination of (1) crowd-
sourced testing of commodity DRAM chips on the market; and
(2) DRAM chip manufacturers publishing information (e.g.,
using datasheet revisions or online resources) about their prod-
ucts, possibly limited to basic information that manufacturers
already have available (i.e., that requires minimal logistical
e�ort to release). �rough a combination of these two av-
enues, information can be provided to all system designers,
including the majority of designers without the ability to con-
duct exhaustive testing, almost immediately without requiring
changes to existing DRAM hardware or standards (though stan-
dardizing the information release could streamline the process).
�en, armed with this information, system designers can make
more informed decisions when developing their own solutions
to system-speci�c design concerns while also preserving the
advantages of commodity DRAM built per general-purpose
DRAM standards.

In Step 2, we propose extending DRAM standards with
explicit DRAM reliability standards that provide industry-
standard guarantees, tools, and/or information helpful to con-
sumers. We envision di�erent possibilities for these reliabil-
ity standards, including (1) reliability guarantees for how a
chip is expected to behave under certain operating conditions
(e.g., predictable behavior of faults [101]); (2) disclosure of
industry-validated DRAM reliability models and testing strate-
gies suitable for commodity DRAM chips (e.g., similar to how
JEDEC JEP122 [102], JESD218 [103], and JESD219 [104] address
Flash-memory-speci�c error mechanisms [105–107] such as
�oating-gate data retention [108–111] and models for physical

phenomena such as threshold voltage distributions [112–115]);
and (3) requirements for manufacturers to directly provide
relevant information about their DRAM chips (e.g., the infor-
mation requested in Step 1). As the DRAM industry continues
to evolve, we anticipate closer collaboration between DRAM
and system designers to e�ciently overcome the technology
scaling challenges that DRAM is already facing [26,28,116,117].
Although we hope that transparency will occur naturally as
part of this process, we believe the end result will be deter-
mined in a large part by the direction in which DRAM stan-
dards evolve. �erefore, we believe that ensuring transparency
of reliability characteristics becomes a �rst-order concern is
essential for allowing innovation going forward.

We make the following contributions:
1. We make a case for the DRAM industry to provide trans-

parency into the consumer-visible reliability characteristics
of commodity DRAM chips so that system designers can
make informed decisions when integrating commodity chips
into their designs.

2. We support our argument with four case studies (DRAM reli-
ability, DRAM refresh, DRAM access latency, and RowHam-
mer), showing that system designers require insight into
commodity DRAM chip reliability in order to adopt improve-
ments in any of the four directions.

3. We identify modern DRAM standards as the primary fac-
tor that limits system designers from comprehensively un-
derstanding the reliability impact of their design decisions,
thereby discouraging the designers from adopting tech-
niques to be�er adapt commodity DRAM chips to their sys-
tems’ speci�c needs.

4. We propose a new two-step approach to facilitate trans-
parency into consumer-visible DRAM reliability character-
istics. In the short term, we ask for information release
through a combination of both (1) crowdsourced testing
from DRAM consumers; and (2) o�cial information from
DRAM manufacturers, possibly standardized by extensions
to DRAM standards. In the long term, we propose extending
DRAM standards with explicit DRAM reliability standards
that provide industry-standard guarantees, tools, and/or in-
formation that enable DRAM consumers to perform their
own reliability analyses and understand DRAM reliability
at di�erent operating points.

2. �e System Designer’s Challenge
Today’s DRAM industry thrives on separation of concerns:

DRAM manufacturers can focus on designing highly-optimized
DRAM chips while consumers can make use of standardized
DRAM that conform to JEDEC standards. �is design inde-
pendence is powerful because it allows each party to leverage
their respective expertise to build the best possible product.
As a result, a system designer who is responsible for choos-
ing the memory substrate for a particular system can simply
select between a limited range of standardized commodity
parts that are optimized for di�erent targets, such as general-
purpose performance (e.g., DDRn [10, 11]), high bandwidth
(e.g., GDDRn [16, 17], HBMn [12, 13]), and low power (e.g.,
LPDDRn [14, 15]).
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Unfortunately, the system designer faces a signi�cant chal-
lenge: the designer is unable to fully explore the memory
design space (as well as the system-memory co-design space)
because there are only a limited number of viable design points
using commodity DRAM chips. �erefore, the limited number
of options inherently forces the designer to overlook opportu-
nities for customizing DRAM operation towards their system’s
particular design goals. As main memory becomes an increas-
ingly signi�cant system bo�leneck [116, 118, 119], we believe
that enabling system designers to �exibly adapt commodity
DRAM to suit their own needs as they see �t is a promising
path to reap the bene�ts of adaptability while preserving the de-
sign independence between DRAM manufacturers and system
designers.
2.1. Bene�ts for DRAM Consumers

Prior works [22, 39, 48–55, 57–60, 66–72, 76–82, 86, 87, 90, 97,
120–135, 135–152] demonstrate signi�cant system-level ben-
e�ts from adapting commodity DRAM operation to di�erent
system needs without changing the DRAM design itself. �is
section reviews the bene�ts of four concrete examples of such
customizations: 1) DRAM reliability improvement, 2) DRAM
refresh overhead reduction, 3) DRAM access latency reduc-
tion, and 4) RowHammer security improvement. In principle,
a system designer can readily implement each customization
using existing techniques. Unfortunately, adopting these tech-
niques in practice requires understanding how DRAM reliabil-
ity characteristics behave under di�erent operating conditions,
which is not clearly communicated by DRAM manufacturers
or standards today. In this section, we review each exam-
ple customization’s potential bene�ts; then, our case studies
throughout Sections 4-7 explore each example customization
in further detail to identify the speci�c factors that we believe
discourage system designers from adopting the examples in
practice.
2.1.1. DRAM Reliability Improvement. DRAM is suscep-
tible to a wide variety of error mechanisms that can impact
overall system reliability. To combat DRAM-related failures,
system designers typically incorporate reliability, availability
and serviceability (RAS) features [153–155] that collectively
improve system reliability beyond what commodity DRAM
chips can provide alone. In general, memory RAS is a broad
research area with solutions spanning the hardware-so�ware
stack, ranging from hardware-based mechanisms within the
DRAM chip (e.g., on-die ECC scrubbing [11, 101, 156], post-
package repair [10, 11, 157–159], target row refresh [100, 160]),
memory controller (e.g., rank-level ECC [48–55, 57–60, 81],
rank-level ECC scrubbing [56, 61, 62, 62–65, 82, 156, 161], repair
techniques [22, 79, 162–169]) to so�ware-only solutions (e.g.,
page retirement [76, 120–124], failure prediction [170–175]).

As a speci�c and relevant example, an important category of
hardware-based redundancy mechanisms known as rank-level
error-correcting codes (rank-level ECC) operate within the
memory controller to isolate the rest of the system from ran-
dom DRAM errors. Depending on the ECC design, rank-level
ECC can protect against random single-bit (e.g., SEC/SEC-DED
Hamming codes [176]), multi-bit (e.g., BCH [177, 178], Reed-

Solomon [179]), and/or multi-component (e.g., Chipkill [19,48])
errors with varying hardware and runtime overheads. �e sys-
tem designer must decide which ECC mechanism is most appro-
priate for their particular system (e.g., which error mechanisms
are dominant and what degree of protection is required). For
example, a state-of-the-art rank-level ECC mechanism called
Frugal-ECC [53] uses data compression to provide chipkill-
correct ECC for×4 non-ECC DIMMs and×8 ECC DIMMs with
negligible performance (maximum of 3.8%), energy-e�ciency,
and area overheads compared with an industry-standard chip-
kill solution. �erefore, Frugal-ECC enables system designers
to implement chipkill reliability using commodity DRAM chips
with a fraction of the storage overheads su�ered by conven-
tional ECC DIMM con�gurations.
2.1.2. DRAM Refresh Overhead Reduction. DRAM stores
data in volatile capacitors, which are susceptible to charge
leakage. To prevent this leakage from causing data loss, DRAM
requires periodic refresh operations that intermi�ently access
all DRAM cells to restore their charge levels to safe values.
Unfortunately, DRAM refresh operations are well known to
waste signi�cant system performance and power [22, 77, 122,
125, 126, 132, 135, 180–182], sacri�cing almost half of the total
memory throughput and wasting almost half of the total DRAM
power for projected 64 Gb chips [77].

To alleviate the power and performance costs of DRAM
refresh, prior works [22, 76–80, 82, 125–135] take advantage
of the fact that most refresh operations are unnecessary.4
�e standard DRAM refresh algorithm refreshes all cells fre-
quently (i.e., at the worst-case rate) to simplify DRAM refresh
and guarantee correctness. However, each cell’s data reten-
tion characteristics vary signi�cantly due to a combination
of data-dependence [78, 127, 129, 130, 189] and process vari-
ation [22, 23, 77, 126, 189–191]. As a result, eliminating un-
necessary refresh operations can provide signi�cant power
reduction and performance improvement. For example, Liu et
al. [77] demonstrate an average energy-per-access and system
performance improvement of 8.3% and 4.1%, respectively, for
4 Gib chips (49.7% and 107.9% for 64 Gib chips) when relaxing
the refresh rate at the row granularity. �erefore, reducing
refresh overheads can potentially bene�t any DRAM-based
system.
2.1.3. DRAM Access Latency Reduction. Figure 1 shows
that DRAM access latency has not signi�cantly improved rela-
tive to storage capacity over the last two decades. �is makes
DRAM an increasingly signi�cant system performance bot-
tleneck today, especially for workloads with large footprints
that are sensitive to DRAM access latency [36,72, 116,118,192–
212]. Although conventional latency-hiding techniques (e.g.,
caching, prefetching, multithreading) can potentially help mit-

4Latency-hiding techniques (e.g, prefetching, memory command schedul-
ing, on-chip caching, etc.) and parallelization of refresh and access opera-
tions [43, 183–186] help mitigate performance overheads but do not change
the total number of refresh operations issued. As a result, such techniques
cannot mitigate energy wastage due to DRAM refresh. �ese techniques are
also imperfect in many cases where latency-hiding is impractical (e.g., row
con�icts between refresh and access commands, larger memory footprints
than available caching resources) [183, 184, 187, 188].
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igate many of the performance concerns, these techniques (1)
fundamentally do not change the latency of each memory ac-
cess and (2) fail to work in many cases (e.g., irregular memory
access pa�erns, random accesses, huge memory footprints).

To address this problem, prior works have taken two major
directions. First, many works [39, 66–72, 135–137] show that
the average DRAM access latency can be shortened by reduc-
ing DRAM access timings for particular memory locations that
can tolerate faster accesses. �is can be done safely because,
although DRAM standards call for constant access timings
across all memory locations, the minimum viable access tim-
ings that the hardware can support actually di�er between
memory locations due to factors such as heterogeneity in the
circuit design [33, 69] and manufacturing process variation
between circuit components [39, 66–68, 73].

Exploiting these variations in access timings to reduce the
average memory access latency can provide signi�cant system
performance improvement. For example, Chang et al. [39] ex-
perimentally show that exploiting access latency variations can
provide an average 8-core system performance improvement
of 13.3%/17.6%/19.5% for real DRAM chips from three major
DRAM manufacturers. Similarly, Kim et al. [67] show that
exploiting access latency variations induced by DRAM sense
ampli�ers provides an average (maximum) system performance
improvement of 4.97% (8.79%) versus using default DRAM ac-
cess timings for 4-core heterogeneous workload mixes based
on data obtained from 282 commodity LPDDR4 DRAM chips.

Second, other works [97, 138–147] show that commodity
DRAM can perform massively-parallel computations (e.g., at
the granularity of an 8 KiB DRAM row) by exploiting the un-
derlying analog behavior of DRAM operations (e.g., charge
sharing between cells). �ese works show that such computa-
tions can signi�cantly improve overall system performance and
energy-e�ciency by both (1) reducing the amount of data trans-
ferred between the processor and DRAM and (2) exploiting
the relatively high throughput of row-granularity operations.
For example, Gao et al. [138] show that in-DRAM 8-bit vector
addition is 9.3× more energy-e�cient than the same computa-
tion in the processor, primarily due to avoiding the need for
o�-chip data transfers. Similarly, Olgun et al. [139] use an end-
to-end FPGA-based evaluation infrastructure to demonstrate
that in-DRAM copy and initialization techniques can improve
the performance of system-level copy and initialization by
12.6× and 14.6×, respectively.
2.1.4. Improving Security Against RowHammer.
RowHammer [87, 213–215] is a well-studied read-disturb phe-
nomenon in modern DRAM chips in which memory accesses to
a given memory location can induce bit-�ips at other locations.
Recent experimental studies [87, 216] show that RowHammer
is continually worsening with process technology shrink-
age. Although DRAM manufacturers incorporate internal
RowHammer-mitigation mechanisms [100,160,216–220], prior
work [100, 160, 217, 221, 222] shows that these mechanisms
do not su�ce. �erefore, several works [86–88, 223–225]
provide RowHammer-mitigation mechanisms that operate
from outside of the DRAM chip to provide strong security

without requiring changes to DRAM chip hardware or relying
upon information from DRAM manufacturers. Such a solution
is a�ractive for a system designer with interest in building
a secure system because the designer can rely upon their
own methods rather than relying upon external, possibly
di�cult-to-verify promises or guarantees [92, 226].

Following prior work [86], we classify previously-proposed
RowHammer defenses into four di�erent categories as follows.
1. Access-agnostic mitigation hardens a DRAM chip against

RowHammer independently of the memory access pa�ern.
�is includes increasing the overall DRAM refresh rate [87,
88, 225] and memory-wide error correction and/or integrity-
checking mechanisms such as strong ECC [87, 219, 226].
�ese mechanisms are algorithmically simple but can in-
troduce signi�cant system hardware, performance, and/or
energy-e�ciency overheads (e.g., a large number of addi-
tional refresh operations [87, 182, 216]).

2. Proactive mitigations [86, 87, 148, 149] adjust the DRAM ac-
cess pa�ern to prevent the possibility of RowHammer errors.

3. Physically isolating mitigations [90, 150–152, 227] physically
separate data such that accesses to one portion of the data
cannot cause RowHammer errors in another.

4. Reactive mitigations [11,87,223,224,228–240] identify symp-
toms of an ongoing RowHammer a�ack (e.g., excessive row
activations) and issue additional row activation or refresh
operations to prevent bit-�ips from occurring.

RowHammer defense is an ongoing area of research, and which
mechanism type is most e�ective depends on the level of secu-
rity (e.g., the threat model) that the system designer requires
and the trade-o�s (e.g., performance, energy, hardware area,
complexity overheads) they are willing to make.
2.2. Bene�ts for DRAMManufacturers

We believe that the ability to adapt commodity DRAM to
system-speci�c design goals also bene�ts DRAM manufactur-
ers for two key reasons. First, adaptability broadens the scope
and competitive advantage of DRAM technology relative to
alternative technologies (e.g., emerging memories). Second,
enabling DRAM consumers to more easily innovate on the
DRAM substrate can encourage valuable feedback for DRAM
manufacturers, including insights from customer use-cases and
well-evaluated suggestions for future products.

Regardless of these bene�ts, we believe making commod-
ity DRAM adaptable has no signi�cant downside for DRAM
manufacturers. �e reliability characteristics that we wish to
be communicated (as described in detail in Section 9.1) are
either (1) already exposed in scienti�c studies today; or (2)
can be reverse-engineered using existing techniques by those
with access to appropriate tools (e.g., competitors, scienti�c
labs). We simply ask for these characteristics to be o�cially
provided in a trustworthy capacity. DRAM manufacturers have
not previously provided this information because there has
been no pressing need to do so. However, releasing this in-
formation makes sense today because it can enable a broad
range of bene�ts for DRAM consumers going forward, espe-
cially as DRAM technology scaling continues to face increasing
di�culties [116, 214, 241].
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2.3. Short-Term vs. Long-Term Solutions
Prior works [26, 87, 116, 118, 214, 215, 241, 242] have praised

the merits of cooperation between DRAM manufacturers and
system designers in order to collaboratively solve main mem-
ory challenges across the system stack. However, this requires
either (1) breaking design independence between the two par-
ties; (2) achieving consensus among all DRAM stakeholders
(i.e., JEDEC commi�ee members and representatives, includ-
ing DRAM manufacturers and consumers) for every design
change, followed by a lengthy adoption period; or (3) reduc-
ing dependence on DRAM standards and JEDEC. We do not
believe any of these options are easy to adopt for either the
(1) short term, where we would like to quickly e�ect changes
that enable information transparency; or (2) long term, where
breaking design independence constrains the very freedom
that we advocate system designers should have in meeting
their own design goals while preserving the cost advantages
of mass-produced commodity DRAM chips.

Instead, we argue for enabling each party to solve their own
system-speci�c design challenges, modifying DRAM standards
only for issues that collectively a�ect all DRAM stakeholders.
However, regardless of how the DRAM industry evolves over
the coming years, we �rmly believe that DRAM must become
more adaptable, whether that occurs through standards or
collaboration.
3. �antitatively Measuring Reliability

As we will show in the following case studies (Sections 4–7),
a system designer exploring unconventional DRAM operating
points must �rst understand how reliably a chip will behave at
that operating point. Given that this behavior is not governed
by DRAM standards or described by DRAM manufacturers, the
system designer must determine it themselves, e.g., through
modeling and/or testing. �is section formalizes the informa-
tion that a system designer may need (but does not necessarily
have access to today) in order to quantitatively understand
DRAM reliability.
3.1. Information Flow During Testing

Figure 2 describes the �ow of information necessary for a
system designer to quantitatively estimate5 a DRAM chip’s
error characteristics 5 starting from basic properties of the

5“Estimate” because, in general, no model or experiment is likely to be
perfect, including those provided by manufacturers.

chip 1 . In principle, these characteristics can comprise any
aspect of DRAM reliability that a system designer wants to
quantify while exploring their system’s design and/or con�gu-
ration space. Examples include: (1) worst-case error rates (e.g.,
bit error rate (BER) or failures in time (FIT)) across a given
set of operating points; (2) a pro�le of error-prone memory
locations; or (3) a list of error-free operating points (e.g., as
identi�ed in a shmoo analysis [243]). �e error characteristics
can be estimated in two di�erent ways: testing or modeling.
3.1.1. Determination from Testing. First, a system de-
signer may estimate error characteristics using measurements
from detailed experimental testing 3 across a variety of
operating conditions. Examples of measured quantities in-
clude: aggregate error rates, per-cell probabilities of error,
and spatial/temporal error distributions. �ese measure-
ments can be made using testing infrastructures ranging from
industry-standard large-scale testing equipment [244, 245] to
home-grown tools based on commodity FPGAs [34, 39, 73,
87, 127, 138, 139, 246–250] or DRAM-based computing sys-
tems [74, 221, 251–253].

To conduct accurate and rigorous testing, the system de-
signer must use an e�ective test methodology 2 that suits
the particular DRAM chip under test. Prior works exten-
sively study key aspects of e�ective test methodologies, in-
cluding appropriate data and access pa�erns, the e�ects of
enabling/disabling DRAM chip features such as target row re-
fresh (TRR) [100, 160, 216, 222, 239] and on-die error correcting
codes (on-die ECC) [23,26,28,30,54,95,254–259], and the viabil-
ity of di�erent DRAM command sequences (e.g., sequences that
enable in-DRAM row copy operations [138, 139, 142, 260], true
random-number generation [140, 141, 261, 262], and physically
unclonable functions [97, 263]).

In turn, choosing an e�ective test methodology requires
knowledge of basic properties about a DRAM chip’s design
and/or error mechanisms 1 . For example, DRAM manufac-
turer’s design choices for the sizes of internal storage arrays
(i.e., mats [36, 69, 140, 264]), charge encoding conventions of
each cell (i.e., the true- and anti-cell organization [98,189]), use
of on-die reliability-improving mechanisms (e.g., on-die ECC,
TRR), and organization of row and column addresses all play
key roles in determining if and how susceptible a DRAM chip
is to key error mechanisms (e.g., data retention [95,98, 189, 191,
265–267], access-latency-related failures [37, 39, 66–69, 72, 140],

Detailed Test Results
 e.g., aggregate error rates
 e.g., per-cell probabilities of error
 e.g., spatial/temporal error distributions

Test Methodologies
 e.g., worst-case data and access patterns
 e.g., chip features to enable/disable
 e.g., viability of DRAM command sequencesChip Design Properties

 e.g., substructure dimensions
 e.g., organization of true-/anti-cells
 e.g., on-die mechanisms (e.g., ECC, TRR)
 e.g., internal row/col address mappings

Model Inputs and/or Parameters

Empirical Data
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22 33

Error Models and Parameters
 e.g., analytical relationships (e.g., semiconductor models)
 e.g., parametric statistical distributions (e.g., exponential, lognormal)
 e.g., physics-based semiconductor models (e.g., TCAD, SPICE)
 e.g., empirically-measured curves (e.g., best-fit polynomials)

44
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Quantifiable Error Characteristics
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Figure 2: Flow of information necessary to determine key error characteristics for a given DRAM device.
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and RowHammer [87,214,215,268–270]). Section 9.1.1 provides
further detail about such design properties and how knowing
them is necessary to develop e�ective test methodologies.
3.1.2. Determination from Modeling. Second, the system
designer may make predictions from analytical or empirical
error models 4 based on a previous understanding of DRAM
errors (e.g., from past experiments or scienti�c studies). Exam-
ples of such error models include: analytical models based on
understanding DRAM failure modes (e.g., sources of runtime
faults [21, 49, 123, 271–273]), parametric statistical models that
provide useful summary statistics (e.g., lognormal distribution
of cell data-retention times [190, 191, 274–280], exponential
distribution of the time-in-state of cells susceptible to variable-
retention time (VRT) [26, 82, 127, 189, 265, 281–289]), physics-
based simulation models (e.g., TCAD [269, 274, 290–292] and
SPICE models [37, 69–71, 136, 227, 293–295]), and empirically-
determined curves that predict observations well (e.g., single-
bit error rates [78, 82, 127, 129, 189, 270]). Similar to testing,
using error models to predict error characteristics ultimately
relies on understanding the DRAM chip being tested because
the accuracy of the predictions requires choosing appropri-
ate models and model parameters (e.g., through testing 3 or
directly from fundamental chip design properties 1 ).
3.2. Access to Modeling and Testing Information

Figure 2 shows that determining a DRAM chip’s error char-
acteristics through modeling or testing ultimately relies on
understanding the chip’s fundamental design properties. �is
reliance can be implicit (e.g., inherent within a pre-existing
work�ow designed for a speci�c chip) or explicit (e.g., cho-
sen as part of a home-grown testing methodology). �erefore,
a system designer must be vigilant of the information they
(perhaps unknowingly) rely upon at each step of their design
process concerning commodity DRAM.

Fortunately, the system designer only needs to be concerned
with the information �ow at the children of a node whose in-
formation is already known from a trustworthy source. For
example, a system designer who wants to identify the loca-
tions of error-prone cells (i.e., 5 ) using testing need not be
concerned with chip design properties (i.e., 1 ) if DRAM man-
ufacturers provide appropriate test methodologies (i.e., 2 ) or
detailed test results (i.e., 3 ). Unfortunately, to our knowl-
edge, neither DRAM standards nor manufacturers provide the
information in any of the nodes today, much less in a clear,
industry-validated manner. �erefore, the system designer
lacks a base of trustworthy information to build upon. �is
creates a barrier to entry for a system designer who wants to
explore optimizations to commodity DRAM by compromis-
ing the designer’s ability to make well-informed or e�ective
decisions.

In general, except for the few major DRAM customers who
may be able to secure con�dentiality agreements,6 system
designers would need to rely on (possibly incorrect or in-

6Even under con�dentiality, DRAM manufacturers may be unwilling to
reveal certain proprietary aspects of their designs (e.g., on-die error correc-
tion [258, 296], target row refresh [92]) or provide speci�cally requested num-
bers.

complete) inferences or assumptions based on domain knowl-
edge or reverse-engineering studies (e.g., similar in spirit
to [39, 67, 69, 78, 94, 98, 100, 160, 189, 216, 258, 297–301]) that
are not veri�ed or supported by the DRAM industry.7 As a
result, the need for assumptions can discourage practitioners
from exploring the full design space even when a given design
choice is otherwise bene�cial. We conclude that the lack of
information transparency is a serious impediment to adopting
many promising DRAM-related optimizations today.
4. Study 1: Improving Memory Reliability

Main memory reliability is a key design concern for any
system because when and how memory errors occur a�ects
overall system reliability. In particular, designers of reliability-
critical systems such as enterprise-class computing clusters
(e.g., cloud, HPC) and systems operating in extreme or hos-
tile environments (e.g., military, automotive, industrial, ex-
traterrestrial) take additional measures (e.g., custom compo-
nents [46, 47, 302–308], redundant resources [60, 309, 310]) to
ensure that memory errors do not compromise their systems.
Section 2.1.1 shows the bene�ts of incorporating mechanisms
to improve memory reliability. �is section explains how the
details of a DRAM chip’s reliability characteristics play a ma-
jor role in determining how system designers improve overall
system reliability.
4.1. Adapting Commodity DRAM Chips

Commodity DRAM is designed to work for a wide variety
of systems at a reasonable (albeit unspeci�ed)8 error rate. In
general, a system designer who needs high memory reliability
must design and build their own solutions (i.e., outside of the
DRAM chip) to tolerate memory errors.9 In doing so, the
designer e�ectively adapts a DRAM chip to speci�c system
needs, enhancing DRAM reliability beyond what the DRAM
chips provide alone.

Section 2.1.1 reviews examples of such memory error-
mitigation mechanisms, which span the hardware-so�ware
stack. Regardless of where each mechanism operates from,
the mechanism targets a particular error model, which de�nes
the scope of the errors that it is designed to mitigate. �is is
important because, while a given mechanism e�ciently miti-
gates errors within its target error model, it may fail to do so if
errors no longer �t the model. In such cases, a di�erent error-
mitigation mechanism (or possibly, a combination of multiple
mechanisms) may be more suitable.

For example, a coarse-grained approach such as page re-
tirement [76, 120–124] e�ciently mitigates a small number of
errors at �xed bit positions. However, page retirement exhibits
signi�cant capacity and performance overheads at high error

7DRAM manufacturers may make assumptions during their own testing.
However, they have full transparency into their own designs (i.e, the root node
in the information �ow), so they can make the most informed decision.

8Academic works speculate that commodity DRAM targets a bit error rate
(BER) within the range of 10–16 – 10–12 [22, 78, 163, 311], but we are unaware
of industry-provided values.

9Even designers who adopt custom DRAM solutions that sacri�ce the cost
advantages of commodity memory (e.g., high-reliability DRAM [46, 47]) may
supplement the DRAM chips with additional error-mitigation mechanisms
outside of the DRAM chip.
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rates or when mitigating errors that change positions over
time [120, 124, 312]. In contrast, a �ne-grained hardware-based
approach such as a block error-correcting code [313–318] can
e�ciently mitigate a limited number of randomly-distributed
errors but can fail silently (and even exacerbate the number of
errors present [30,95,101,258,259,319,320]) when its correction
capability is exceeded. We conclude that it is essential for the
system designer to know when and how errors occur in a given
memory chip in order to make an informed choice of which
error-mitigation mechanism to use in a particular system.
4.2. Lack of Transparency in Commodity DRAM

Unfortunately, system designers generally do not have ac-
cess to de�nitive error models for commodity DRAM chips.
�erefore, designers are le� to rely upon information they can
gather by themselves (e.g., by expending testing resources)
or from external, possibly untrustworthy, sources. However,
as Section 3 discusses, obtaining the error characteristics of
a DRAM chip without input from the manufacturers requires
making a series of assumptions about the chip’s design and
testing methodologies. �e need for these assumptions (i.e.,
the lack of trustworthy information) can easily discourage de-
signers from pursuing custom solutions to enhance DRAM
reliability.

To exacerbate the problem of identifying a de�nitive er-
ror model, DRAM manufacturers are starting to incorporate
two on-die error-mitigation mechanisms that correct a lim-
ited number of errors from within the DRAM chip itself: (1)
on-die ECC [28, 54, 95, 254–258] for improving reliability and
yield and (2) target row refresh [100, 160, 222, 239] for partially
mitigating the RowHammer vulnerability. Prior works on
ECC [27, 30, 54, 95, 101, 258, 259, 296, 320–324] and RowHam-
mer [92, 100, 160, 226] show that both on-die ECC and TRR
change how errors appear outside of the DRAM chip, thereby
changing the DRAM error model seen by the memory con-
troller (and therefore, to the rest of the system). Unfortunately,
both mechanisms are opaque to the memory controller and are
considered trade secrets that DRAM manufacturers will not of-
�cially disclose [22,23,92,93,95,226,258,298]. As a result, both
on-die ECC and TRR make it di�cult for a system designer
to reason about the DRAM error model and error rates. For
example, to account for on-die ECC’s and TRR’s e�ects when
designing a system-level error-mitigation mechanism, the sys-
tem designer must spend additional time and resources using
reverse-engineering techniques (e.g., for on-die ECC [95, 258]
or TRR [100, 160]) or otherwise �nd a trustworthy source to
acquire the necessary information in reliable manner.
5. Study 2: DRAM Refresh Overheads

DRAM refresh is a key design concern in modern systems.
Section 2.1.2 reviews evidence that reducing the total number of
refresh operations signi�cantly bene�ts overall system perfor-
mance and energy e�ciency. In this section, we examine how
mitigating refresh overheads in commodity DRAM requires
making assumptions about DRAM reliability characteristics.
Based on our analysis, we argue that these assumptions limit
the techniques’ potential for adoption, discouraging system
designers from using these solutions in practice.

5.1. Adapting Commodity DRAM Chips
Reducing unnecessary refresh operations in commodity

DRAM chips generally requires two key steps. First, the mem-
ory controller must reduce the frequency of periodic refresh
operations. �is is achievable (though not necessarily sup-
ported to arbitrary values) using commodity DRAM chips be-
cause the memory controller manages DRAM refresh timings.
For example, the memory controller might relax the rate at
which it issues refresh operations to half of the DDRn standard
of 3.9 or 7.8 µs, which is supported by standards at extended
temperature ranges [9–11, 14, 15], or even to over an order of
magnitude less o�en [22, 76, 77, 134].

Second, the system must mitigate any errors that may occur
within the small number of DRAM cells that require frequent
refreshing. Doing so requires either using additional refresh
operations (e.g., by issuing extra row activations [77]) or using
error-mitigation mechanisms within processor (e.g., ECC [82]
and/or bit-repair techniques [22, 76, 79]). Although both strate-
gies introduce new performance and energy overheads, the
bene�ts of reducing unnecessary refresh operations outweigh
the overheads introduced [22,76–80,82,125,126,325]. For exam-
ple, Liu et al. [77] project that DRAM refresh overheads cause
a 187.6% increase in the energy-per access and a 63.7% system
performance degradation for 64 Gib chips. By reducing the
overall number of DRAM refresh operations, the authors show
that their mechanism, RAIDR, can mitigate these overheads by
49.7% and 107.9%, respectively.
5.2. Lack of Transparency in Commodity DRAM

Knowing, predicting, or identifying cells that cannot safely
withstand infrequent refreshing (i.e., retention-weak cells) is a
di�cult reliability problem because the cells’ likelihood of error
changes with how a DRAM chip is used (i.e., operating condi-
tions such as the refresh rate, voltage, temperature) and the
particular DRAM chip circuit design (e.g., random cell-to-cell
variations, locations of true and anti-cells [95, 98, 189]). Prior
works propose two practical ways of identifying retention-
weak cells: (1) active pro�ling, which uses comprehensive tests
to search for error-prone cells o�ine [77–79, 127, 129, 135],
and (2) reactive pro�ling, which constantly monitors memory
to identify errors as they manifest during runtime, e.g., ECC
scrubbing [56, 61, 82]. Both approaches require the pro�ler
to understand the worst-case behavior of data-retention er-
rors for a given DRAM chip [79, 127]: an active pro�ler must
use the worst-case conditions to maximize the proportion of
retention-weak cells it identi�es during pro�ling [78] and a
reactive pro�ler must be provisioned to identify (and possibly
also mitigate) the worst-case error pa�ern(s) that might be ob-
served at runtime, e.g., to choose an appropriate ECC detection
and correction capability [127, 226, 324].

�e fact that an e�ective error pro�ling mechanism relies on
understanding the underlying error characteristics reinforces
the argument presented in Section 3. Even though there ex-
ist techniques for mitigating refresh overheads in commodity
DRAM, practically adopting them relies on prerequisite knowl-
edge about a DRAM chip and its reliability characteristics that
is not provided by the DRAM industry today.
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6. Study 3: Long DRAM Access Latency
Slow generational improvements in the DRAM access la-

tency (shown in Section 1) contrast with the growing preva-
lence of latency-sensitive workloads today [36,72,116,118,192–
212,326–328]. �erefore, as Section 2.1.3 discusses, there is sig-
ni�cant opportunity for improving overall system performance
by reducing the memory access latency [39,66–72,135–137,329,
330]. In this section, we study how techniques for reducing
the access latency of commodity DRAM chips rely on mak-
ing assumptions about DRAM reliability characteristics. �en,
we argue that the need for these assumptions (and the lack
of transparency in DRAM to allow them) discourages system
designers from adopting the latency reduction techniques.
6.1. Adapting Commodity DRAM Chips

Strategies for improving the access latency of commod-
ity DRAM chips rely on manipulating DRAM commands
and/or access timings to either (1) eliminate conservative tim-
ing margins that DRAM manufacturers use to account for
worst-case operation [39, 66–68, 74, 75, 135–137, 211]; or (2)
exploit unde�ned DRAM chip behavior to perform bene�cial
operations (e.g., performing massively-parallel computations
within DRAM rows [138, 139, 142–144, 146, 147, 331, 332], gen-
erating random values [140, 141, 261] or unique chip identi-
�ers [97, 263, 333–335]).

In both cases, new DRAM access timings must be determined
that ensure the desired operation can be performed predictably
and reliably under all conditions. To identify these access tim-
ings, prior works [32–34,39,66,68,73,74,97,138,140,141,246,336]
perform extensive experimental characterization studies across
many DRAM chips. �ese studies account for three primary
sources of variation that a�ect the access timings of a given
memory location. First, process variation introduces random
variations between DRAM chip components (e.g., cells, rows,
columns). Second, a manufacturer’s particular circuit design
introduces structural variation (called design-induced varia-
tion [69]) that deterministically a�ects access timings based
on a component’s location in the overall DRAM design (e.g.,
cells along the same bitline [67], cells at the borders of inter-
nal storage arrays [69]). �ird, the charge level of a DRAM
cell varies over time due to leakage and the e�ects of DRAM
accesses [136, 211]. Experimentally determining the new pre-
dictable and reliable access timings requires properly account-
ing for all three sources of variation under all operating condi-
tions.
6.2. Lack of Transparency in Commodity DRAM

Unfortunately, determining new viable access timings re-
quires developing and executing a reliable testing methodology,
which in turn requires making similar assumptions to those dis-
cussed for data-retention error pro�ling in Section 5.2. Choos-
ing runtime (e.g., data and access pa�erns) and environmental
(e.g., temperature, voltage) testing conditions in a meaningful
way requires some understanding of the error mechanisms in-
volved in timing-related errors [130], including (but not limited
to) aspects of the circuit design, such as internal substructure
dimensions (e.g., subarray sizing) [67, 69], the correspondence

between logical DRAM bus addresses and physical cell loca-
tions [39, 68, 129], and the order of rows refreshed by each
auto-refresh operation [211]. A system designer is discouraged
from exploring improvements to the commodity DRAM access
latency without trustworthy access to this information.
7. Study 4: RowHammer Mitigation

Many promising proposals exist for adding RowHammer de-
fenses to commodity DRAM chips (discussed in Section 2.1.4),
but their potential for adoption is hampered by system design-
ers’ lack of visibility into how the underlying error mechanism
behaves. In this section, we examine the various assumptions
that RowHammer defense proposals rely upon and argue that
these assumptions pose serious barriers for practical adoption.
7.1. Adapting Commodity DRAM Chips

To e�ectively mitigate RowHammer bit �ips, a mitigation
mechanism must be con�gured based on the vulnerability level
of a given DRAM chip. �is requires estimating the chip’s
RowHammer error characteristics for di�erent operating con-
ditions and access pa�erns. Each of the four mechanism types
introduced in Section 2.1.4 requires estimating di�erent char-
acteristics. Table 1 summarizes the di�erent pieces of informa-
tion required for each mitigation type. �e �rst is known as
HC�rst [99, 216] or RowHammer �reshold [86, 87, 337], which
describes the worst-case number of RowHammer memory ac-
cesses required to induce a bit-�ip. �e second is known as
the blast radius [87, 216], which describes how many rows are
a�ected by hammering a single row. �e third is the DRAM’s
internal physical row address mapping [87, 338], which is nec-
essary to identify the locations of victim rows.

Required Information
Strategy HC�rst Blast Radius Row Mapping
Access-Agnostic 3

Proactive 3 3

Physically Isolating 3 3 3

Reactive 3 3 3

Table 1: Information needed by each of the four RowHammer-
mitigation strategies.

All three RowHammer error characteristics vary between
DRAM manufacturers, chips, and cells based on a combination
of random process variation, a manufacturers’ particular cir-
cuit design (including yield-management techniques such as
post-manufacturing repair, target row refresh, and error cor-
recting codes), and operating conditions such as temperature
and voltage [87, 99, 216, 224, 270, 298, 339–341]. �erefore, as
with estimating DRAM refresh and access timings (discussed
in Sections 5.2 and 6.2), these studies rely on extensive experi-
mental testing to estimate RowHammer error characteristics
that are needed to design and/or con�gure the RowHammer
defenses discussed in Section 2.1.4.
7.2. Lack of Transparency in Commodity DRAM

We observe that all previously-proposed RowHammer mit-
igation mechanisms require accurately estimating RowHam-
mer error characteristics throughout all valid operating condi-
tions. In particular, every mechanism must be tuned against
at least HC�rst in order to e�ectively prevent RowHammer.
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Prior works [92,93,226] make the same observation, discussing
the di�culty in practically determining and relying on this
information without support from DRAM manufacturers.

�erefore, a security-focused system designer who wants to
implement or build upon one of the many previously-proposed
system-level RowHammer defense mechanisms (discussed in
Section 2.1.4) is limited by the same information access chal-
lenges as discussed in Section 3.2: because neither the error
characteristics they need nor the methods to obtain them are
provided by o�cial sources, the system designer must rely on
other means to obtain the necessary information. As a result,
the system designer is likely discouraged from exploring de-
signs that address RowHammer errors in commodity DRAM
chips altogether.

8. Current DRAM Standards as the Problem
Based on our case studies, we conclude that reliance on

information about DRAM reliability characteristics poses a
serious challenge for optimizing how commodity DRAM is
used. In this section, we hypothesize that the unavailability
of information related to DRAM reliability is caused by a lack
of transparency within DRAM standards which provide con-
trol over, but not insight into, DRAM operations. We identify
DRAM standards as both (1) the root cause of having to make
assumptions about DRAM reliability (as standards are currently
de�ned) and (2) the pathway to a solution for alleviating the
need for such assumptions (by incorporating DRAM reliability
as a key concern).
8.1. �e Problem of Information Unavailability

In each case study throughout Sections 4–7, we observe that
optimizing commodity DRAM chips for key system design con-
cerns requires knowing information about DRAM reliability.
�is is unsurprising because reliability is central to each case
study’s approach: each study improves system-level metrics
(e.g., reliability, energy-e�ciency, performance, security) by
leveraging key properties of one or more error mechanisms
(e.g., spatiotemporal dependence of errors due to circuit tim-
ing violations [39, 67, 69], the localized nature of RowHammer
errors [87, 150–152, 216]). �erefore, identifying the best op-
erating point requires at least a basic understanding of how
the error mechanisms themselves behave under representative
operating conditions.

Recent works [92, 226] discuss the pitfalls of designing de-
fense mechanisms that rely on knowledge of how RowHammer
errors behave (e.g., HC�rst, dependence on a chip’s internal
cell organization), calling into question the practicality of accu-
rately determining these details given an arbitrary DRAM chip.
Knowing or determining this information is essential to guaran-
tee protection against RowHammer. However, determining it
without guidance from DRAM manufacturers requires per-chip
testing and/or reverse-engineering that relies on the accuracy
of the underlying testing methodology used, which itself relies
on knowledge of DRAM chip details that likely needs to be
assumed or inferred (as discussed in Sections 3 and 7.2).

As a result, a system designer who wants to adapt commod-
ity DRAM for their design requirements today is forced to

make design and/or mechanism con�guration decisions based
upon assumptions or inferences from uno�cial sources (e.g.,
self-designed experimental studies [32–34, 39, 66–69, 73, 74, 87,
97, 138, 140, 141, 189, 246, 261, 263, 336]). Unfortunately, even a
system designer willing to spend signi�cant resources on such
adaptations (e.g., to enhance system reliability, performance,
security, etc.) may be discouraged by the underlying depen-
dence on untrustworthy information. In the worst case, the
designer may judge all adaptations to be impractical without
a trustworthy understanding of a DRAM chip. We conclude
that the lack of information transparency today discourages
system designers from exploring alternative designs that have
been shown to provide tangible bene�ts.
8.2. Limitations of DRAM Standards

Current DRAM standards do not address general reliabil-
ity characteristics because commodity DRAM is designed for
a �xed, high-reliability operating point such that the typical
consumer can largely ignore errors. �is follows directly from
the separation-of-concerns between system and DRAM de-
signers: current DRAM standards place most of the burden of
addressing DRAM reliability challenges (e.g., worsening error
rates with continued technology scaling [26,28,116]) on DRAM
manufacturers alone.10

We believe that this state of a�airs arises naturally because
establishing a strict separation of concerns requires a clear and
explicit interface between manufacturers and customers. Con-
sequently, ensuring that the standards leave enough �exibility
for diverse customer use-cases requires careful and explicit
a�ention. �is is because the standards are susceptible to
abstraction inversion [344], a design anti-pa�ern in which a
previously agreed-upon interface becomes an obstacle, forcing
system designers to re-implement basic functionality in terms
of the outdated abstraction. A rigid interface limits what is
and is not possible, potentially requiring unproductive reverse-
engineering to work around.

We argue that needing to make assumptions in order to adapt
commodity DRAM to system-speci�c goals clearly indicates
abstraction inversion today. �is implies that DRAM standards
have aged without su�cient a�ention to �exibility. Although a
�xed operating point de�nes a clear interface, we believe that
leaving room for (and potentially even encouraging) di�erent
operating points is essential today.

9. DRAM Standards as the Solution
We believe that the separation of concerns provided by

DRAM standards is necessary for practicality because it en-
ables DRAM manufacturers and system designers to focus on
designing the best possible products within their respective
areas of expertise. However, we argue that the separation must
be cra�ed in a way that not only does not impede progress,
but ideally encourages and aids it. To achieve both goals, we
propose extending DRAM standards in a way that enables sys-
tem designers to make informed decisions about how their
design choices will a�ect DRAM operation. In other words,

10High-reliability systems may supplement DRAM chips’ base reliability
with additional error-mitigation mechanisms, as discussed in Section 2.1.1.
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instead of modifying DRAM designs, we advocate modifying
standards to facilitate transparency of DRAM reliability char-
acteristics. Armed with this information, system designers can
freely explore how to best use commodity DRAM chips to solve
their own design challenges while preserving the separation
of concerns that allows DRAM designers to focus on building
the best possible standards-compliant DRAM chips.
9.1. Choosing Information to Release

We identify what information to release using our analysis
of information �ow in Section 3. We observe that, given the
information at any node in Figure 2, system designers can
work to determine the information at each of its child nodes.
As a result, access to trustworthy information at any node
provides system designers with a foundation to make informed
design decisions. �erefore, we recommend that the DRAM
industry be free to release information at at least one node
of their choice that they are willing and capable of doing so.
�is section examines realistic possibilities for communicating
information at each node of the �owchart.
9.1.1. Basic Design Characteristics. At the lowest level,
DRAM manufacturers could provide basic chip design char-
acteristics that allow system designers to develop their own
test methodologies and error models. �is is the most general
and �exible approach because it places no limitations on what
types of studies system designers may pursue (e.g., in contrast
to providing information that is useful for reasoning about only
one particular error mechanism). Table 2 gives examples of
key design characteristics that prior works o�en make assump-
tions about in their own e�orts to optimize commodity DRAM
usage. For each design characteristic, we list prior works that
reverse-engineer the characteristic and describe use-cases that
rely on knowledge of the characteristics.

We believe that releasing these characteristics will minimally
(if at all) impact DRAM manufacturer’s business interests given
that each of the characteristics can be reverse-engineered with
existing methods (as shown by Table 2, Column 2) and access
to appropriate tools, as demonstrated by prior studies [39, 67,
69, 78, 87, 94–96, 98, 100, 127, 160, 189, 191, 216, 258, 297–299]. Re-

leasing this information in an o�cial capacity simply con�rms
what is already suspected, providing a competitor with no
more information about a given DRAM chip than they already
had available. On the other hand, knowing this information
empowers system designers and enables them to con�dently
design and implement system-level optimizations, bene�ting
both designers and manufacturers in the long run (as discussed
in Section 2).
9.1.2. Test Methodologies. At a level of abstraction beyond
chip design details, DRAM manufacturers could describe e�ec-
tive test methodologies that system designers can use to study
the particular aspects of DRAM reliability they are interested
in. Compared with providing chip design characteristics, di-
rectly providing test methodologies absolves (1) manufacturers
from needing to reveal chip design information; and (2) sys-
tem designers from needing the DRAM-related expertise to
determine the test methodologies from chip design character-
istics.11 As a drawback, providing test methodologies alone
limits system designers to working with only the particular
error mechanisms that the methodologies are designed for (e.g.,
data-retention, RowHammer). Table 3 summarizes key aspects
of testing methodologies that prior works generally need to
assume throughout the course of their testing.
9.1.3. TestResults and/or ErrorModels.At the highest level
of abstraction, DRAM manufacturers can directly provide test
results and/or error models related to speci�c studies needed
by system designers. �is could take the form of parametric er-
ror models (e.g., the statistical relationship between operating
timings and error rates) along with parameter values for each
chip, �ne-granularity error characteristics (e.g., per-column
minimum viable access timings) and/or summary statistics of
interest (e.g., HC�rst in studies pertaining to RowHammer). In
this way, system designers can constrain (or entirely bypass)
testing when developing mechanisms using the provided infor-

11We believe that interested parties already have such expertise, as shown
by the fact that many studies [39, 67, 69, 78, 87, 94–96, 98, 100, 127, 160, 189,
191, 216, 258, 297–299] determine the necessary test methodologies through
extensive experimentation.

Design Characteristic Reverse-Engineered By Use-Case(s) Relying on Knowing the Characteristic

Cell charge encoding convention
(i.e., true- and anti-cell layout)

Testing [78, 95, 98, 189] Data-retention error modeling and testing for mitigating refresh
overheads (e.g., designing worst-case test pa�erns) [98, 130, 189]

On-die ECC details Modeling and
testing [95, 258]

Improving reliability (e.g., designing ECC within the memory
controller) [27, 30, 101, 321], mitigating RowHammer [100, 216, 219, 222]

Target row refresh (TRR) details Testing [100, 160] Modeling and mitigating RowHammer [100, 160, 222]
Mapping between internal and external
row addresses

Testing [69, 94, 216, 297, 299,
342] Mitigating RowHammer [87, 94, 216, 297, 298]

Row addresses refreshed by each
refresh operation Testing [100] Mitigating RowHammer [100], improving access timings [70, 211]

Substructure organization (e.g., cell
array dimensions)

Modeling [69] and
testing [39, 67, 69] Improving DRAM access timings [39, 67, 69]

Analytical model parameters
(e.g., bitline capacitance)

Modeling and
testing [189, 191]

Developing and using error models for improving overall
reliability [276], mitigating refresh overheads
(e.g., data-retention [191, 271, 275] and VRT [283, 284] models),
improving access timings [69], and mitigating RowHammer [270, 343]

Table 2: Basic DRAM chip design characteristics that are typically assumed or inferred for experimental studies.
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Test Parameter Description

Data pa�ern
Data pa�ern that maximizes the chance of
errors occurring [67, 78, 87, 96, 96, 98–100, 127,
189, 216, 221, 222, 248, 342, 345–347]

Environmental
conditions

Temperature and voltage that lead to
worst-case behavior [99, 141, 189, 191, 248, 249,
282, 339, 348, 349]

Test algorithm
Sequence of representative and/or worst-case
DRAM operations to
test [68, 87, 97, 100, 141, 189, 221, 222, 350]

Table 3: Testing parameters that are typically assumed or in-
ferred during experimental studies.

mation. As a drawback, directly releasing test results and/or
error models constrains system designers to developing solu-
tions only for those design concerns that pertain to the released
information. Table 4 provides examples of key test results and
error models that prior works leverage in order to implement
optimizations to commodity DRAM.
Test Result or
Error Model Description

Data-retention
times

Minimum refresh rate required for di�erent
DRAM regions (e.g., rows,
cells) [22, 77, 79, 127, 128, 189, 351]

Error pro�le
List of cells susceptible to errors (e.g.,
VRT [82, 127, 189],
latency-related [39, 66, 67, 97, 141])

Error rate
summary
statistics

Aggregate error rates (e.g.,
BER [26, 78, 95, 189, 248], FIT [349, 352, 353]),
distribution parameters (e.g., copula [284],
lognormal [190, 191, 276], exponential [77, 287])

RowHammer
blast radius

Maximum number of rows a�ected by
hammering one or more
row(s) [86, 87, 93, 216, 224, 343]

HC�rst or
RowHammer
�reshold

Minimum number of RowHammer accesses
required to induce bit-�ips [86, 87, 99, 216, 337]

Table 4: Examples of key test results and error models from
prior works that study and/or optimize commodity DRAM.

9.2. Choosing When to Release the Information
We expect that releasing information by changing DRAM

standards will be a slow process due to the need for consensus
between DRAM stakeholders. Instead, we propose decoupling
the release of information from the requirement to do so. To this
end, we recommend a practical two-step process with di�erent
approaches in the short- and long-term.
9.2.1. Step 1: Immediate Disclosure of Information. We
recommend two independent approaches to quickly release
information in the short-term. First, we recommend a public
crowdsourced database that aggregates already-known infor-
mation, e.g., inferred through reverse-engineering studies. We
believe this is practical given the signi�cant research and in-
dustry interest in optimizing how commodity DRAM chips are
used. Such a database would provide an opportunity for peer
review of posted information, increasing the likelihood that the
information is trustworthy. In the long run, we believe such
a database would facilitate information release from DRAM

manufacturers themselves because the manufacturers could
simply validate database information, if not contribute directly.

Second, we recommend that commodity DRAM manufac-
turers individually release one or more of the aforementioned
categories of information for current DRAM chips and those
already in the �eld. For example, manufacturers may update
chip datasheets to incorporate relevant design characteristics or
make more extensive information available online (e.g., similar
to how some manufacturers already provide compliance doc-
uments and functional simulation models through their web-
sites [354–356]). Releasing any of the information described
throughout Section 9.1 requires no changes to DRAM designs
or standards, though modifying DRAM standards (e.g., via an
addendum, as we suggest in Step 2) would help unify the infor-
mation release across all manufacturers. However, in the short
term, we believe it is more important to release the informa-
tion, even if not standardized, so that it is available as soon as
possible.
9.2.2. Step 2: Explicit DRAMReliability Standards. In the
long term, we recommend DRAM standards be modi�ed to
promote (or even require) DRAM manufacturers to disclose
any information that impacts DRAM reliability as relevant to a
system designer. �is information may include any or all of the
information discussed throughout this work; we believe that
the DRAM stakeholders themselves (i.e., DRAM manufacturers
and system designers) are in a good position to determine and
standardize which information is the most relevant and useful
to regulate.

As a concrete example of how such changes to standards
may occur, we reference test methodologies [103, 104] and
error models [102] that JEDEC provides for NAND �ash mem-
ory endurance [105–107], including �oating-gate data reten-
tion [108–111] and threshold voltage distributions [112–115].
�ese documents outline standardized best practices for study-
ing and characterizing endurance properties of SSD devices.
We envision analogous documents released for key DRAM
error mechanisms (e.g., data-retention, access-timing-related,
RowHammer), providing a standardized and reliable alternative
to inferring the same information through uno�cial channels.
9.3. Alternative Futures

We anticipate consumer use-cases to continue diversify-
ing, making a�ordable-yet-�exible DRAM increasingly im-
portant. Ambitious initiatives such as DRAM-system co-
design [87, 117, 118, 241, 242] and emerging, non-traditional
DRAM architectures [119, 198, 241, 326, 327, 357–362] will nat-
urally engender transparency by tightening the relationship
between DRAM manufacturers and system designers. Regard-
less of the underlying motivation, we believe that increased
transparency of DRAM reliability characteristics will remain
crucial to allowing system designers to make the best use of
commodity DRAM chips by enabling them to customize DRAM
chips for system-level goals.
10. Conclusion

We contend that system designers lack the necessary trans-
parency into DRAM reliability to make informed decisions

12



about how their design choices will a�ect DRAM operation.
Without this transparency, system designers are discouraged
from exploring the full design space around commodity DRAM,
wasting considerable potential for system-level optimization
in meeting the particular needs of their systems. We support
our argument with four case studies that each examine an
important design concern in modern DRAM-based systems:
(1) improving DRAM reliability; (2) mitigating DRAM refresh
overheads; (3) decreasing the DRAM access latency; and (4)
defending against RowHammer. For each case study, we argue
that developing an e�ective system-level solution requires mak-
ing restrictive, potentially incorrect assumptions about DRAM
reliability characteristics. Based on our studies, we identify
DRAM standards as the source of the problem: current stan-
dards enforce a �xed operating point without providing the
context necessary to enable safe operation outside that point.
To overcome this problem, we introduce a two-step approach
that modi�es DRAM standards to incorporate transparency
of key reliability characteristics. We believe that our work
paves the way for a more open and �exible DRAM standard
that enables DRAM consumers to be�er adapt and build upon
commodity DRAM technology while allowing DRAM manu-
facturers to preserve their competitive edge. As a result, our
work enables be�er innovation of customized DRAM systems
to fully harness the advantages of DRAM technology into the
future.
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[99] L. Orosa, A. G. Yağlıkçı, H. Luo, A. Olgun, J. Park, H. Hassan, M. Patel,
J. S. Kim, and O. Mutlu, “A Deeper Look into RowHammer’s Sensitiv-
ities: Experiemental Analysis of Real DRAM Chips and Implications
on Future A�acks and Defenses,” in MICRO, 2021.

[100] H. Hassan, Y. C. Tugrul, J. S. Kim, V. Van der Veen, K. Razavi, and
O. Mutlu, “Uncovering In-DRAM RowHammer Protection Mecha-
nisms: A New Methodology, Custom RowHammer Pa�erns, and
Implications,” in MICRO, 2021.

[101] K. Criss, K. Bains, R. Agarwal, T. Benne�, T. Grunzke, J. K. Kim,
H. Chung, and M. Jang, “Improving Memory Reliability by Bounding
DRAM Faults: DDR5 Improved Reliability Features,” in MEMSYS,
2020.

[102] JEDEC, JEP122H: Failure Mechanisms and Models for Semiconductor
Devices, 2016.

[103] JEDEC, JESD218: Solid-State Drive (SSD) Requirements and Endurance
Test Method, 2010.

[104] JEDEC, JESD219: Solid-State Drive (SSD) Endurance Workloads, 2010.
[105] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Error Character-

ization, Mitigation, and Recovery In Flash-Memory-Based Solid-State
Drives,” Proc. IEEE, 2017.

[106] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Error Pa�erns in MLC
NAND Flash Memory: Measurement, Characterization, and Analysis,”
in DATE, 2012.

[107] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Errors in
Flash-Memory-Based Solid-State Drives: Analysis, Mitigation, and
Recovery,” Inside Solid State Drives, 2018.

[108] Y. Cai, Y. Luo, E. F. Haratsch, K. Mai, and O. Mutlu, “Data Retention
in MLC NAND Flash Memory: Characterization, Optimization, and
Recovery,” in HPCA, 2015.

[109] Y. Luo, S. Ghose, Y. Cai, E. F. Haratsch, and O. Mutlu, “HeatWatch:
Improving 3D NAND Flash Memory Device Reliability by Exploiting
Self-Recovery and Temperature Awareness,” in HPCA, 2018.

[110] Y. Luo, S. Ghose, Y. Cai, E. F. Haratsch, and O. Mutlu, “Improving 3D
NAND Flash Memory Lifetime by Tolerating Early Retention Loss
and Process Variation,” SIGMETRICS, 2018.

[111] Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, A. Cristal, O. S. Unsal,
and K. Mai, “Flash Correct-And-Refresh: Retention-Aware Error
Management for Increased Flash Memory Lifetime,” in ICCD, 2012.

[112] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “�reshold Voltage Dis-
tribution in MLC NAND Flash Memory: Characterization, Analysis,
and Modeling,” in DATE, 2013.

[113] Y. Cai, O. Mutlu, E. F. Haratsch, and K. Mai, “Program Interference
in MLC NAND Flash Memory: Characterization, Modeling, and
Mitigation,” in ICCD, 2013.

[114] Y. Cai, Y. Luo, S. Ghose, and O. Mutlu, “Read Disturb Errors in MLC
NAND Flash Memory: Characterization, Mitigation, and Recovery,”
in DSN, 2015.

[115] Y. Luo, S. Ghose, Y. Cai, E. F. Haratsch, and O. Mutlu, “Enabling
Accurate and Practical Online Flash Channel Modeling for Modern
MLC NAND Flash Memory,” in JSAC, 2016.

[116] O. Mutlu, “Memory Scaling: A Systems Architecture Perspective,” in
IMW, 2013.

[117] O. Mutlu, “Main Memory Scaling: Challenges and Solution Direc-
tions,” in More �an Moore Technologies for Next Generation Computer
Design. Springer, 2015, pp. 127–153.

[118] O. Mutlu and L. Subramanian, “Research Problems and Opportunities
in Memory Systems,” in SUPERFRI, 2014.
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A. DRAM Trends Survey
We survey manufacturer-recommended DRAM operating

parameters as speci�ed in commodity DRAM chip datasheets
in order to understand how the parameters have evolved over
time. We extract values from 58 independent DRAM chip
datasheets from across 19 di�erent DRAM manufacturers with
datasheet publishing dates between 1970 and 2021. Appendix B
lists each datasheet and the details of the DRAM chip that it cor-
responds to. We openly release our full dataset on GitHub [35],
which provides a spreadsheet with all of the raw data used
in this paper, including each timing and current parameter
value, and additional �elds (e.g., clock frequencies, package pin
counts, remaining IDD values) that are not presented here.
A.1. DRAM Access Timing Trends

We survey the evolution of the following four DRAM tim-
ing parameters that are directly related to DRAM chip perfor-
mance.
• tRCD: time between issuing a row command (i.e., row acti-

vation) and a column command (e.g., read) to the row.
• CAS Latency (or tAA): time between issuing an access to a

given column address and the data being ready to access.
• tRAS: time between issuing a row command (i.e., row acti-

vation) and a precharge command.
• tRC: time between accessing two di�erent rows.
Figure 3 shows how key DRAM timing parameters have
evolved across DRAM chips of di�erent years (top) and capaci-
ties (bo�om). Timing values are shown in log scale to be�er
distinguish small values in newer DRAM chips. Each type of
marker illustrates DRAM chips of di�erent DRAM standards.
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Figure 3: Evolution of four key DRAM timing parameters
(shown in log scale) across years (top) and chip capacities (bot-
tom) separated by DRAM standard.

We make three qualitative observations. First, while all
four DRAM timing values have roughly decreased over time,
improvements have been relatively stagnant for the last two
decades (note the logarithmic Y-axis). �e bulk of the improve-

ment in timing parameter values occurred during the period
of asynchronous DRAM, and following the introduction of
SDRAM and DDRn DRAM chips, li�le to no improvements
have been made despite, or possibly as a result of, continual
increases in overall chip storage density. Second, CAS latency
and tRCD converged to roughly the same values following the
introduction of synchronous DRAM. We hypothesize that this
is because similar factors a�ect the latency of these operations,
including a long command and data communication latency
between the external DRAM bus and the internal storage ar-
ray [3]. �ird, the DDR5 data points appear to worsen relative
to previous DDRn points. However, we believe this might be
because DDR5 chips are new at the time of writing this arti-
cle and have not yet been fully optimized (e.g., through die
revisions and other process improvements).

To quantify the changes in access timings, we aggre-
gate the data points from Figure 3 by three di�erent cat-
egories: time, DRAM standard, and chip capacity. Fig-
ure 4, shows the minimum, median, and maximum of the
timing parameter values (in log scale) for each 5-year pe-
riod (top) and DRAM standard (bo�om). �e data shows
that the median tRCD/CAS Latency/tRAS/tRC reduced by
2.66/3.11/2.89/2.89% per year on average between 1970 and
2000 but only 0.81/0.97/1.33/1.53% between 2000 and 201512

for an overall decrease of 1.83/2.10/1.99/2.00% between 1970
and 2015.
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Figure 4: Evolution of the minimum, median, and maximum
values of key DRAM timing parameters (shown in log scale)
for each 5-year period (top) and DRAM standard (bottom).

12We omit the 2020 data point because 2020 shows a regression in CAS
latency due to �rst-generation DDR5 chips, which we believe is not represen-
tative because of its immature technology.
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Figure 5 shows the minimum, median, and maximum of the
timing parameter values (in log scale) grouped by DRAM chip
storage capacity.13 We �nd that the timings follow similar
trends as in Figure 4 because higher-capacity DRAM chips are
typically introduced more recently and follow newer DRAM
standards.
A.2. Current Consumption Trends

We review the evolution of the following key DRAM current
consumption measurements, which are standardized by JEDEC
and are provided by manufacturers in their datasheets.
• IDD0: current consumption with continuous row activation

and precharge commands issued to only one bank.
• IDD4R: current consumption when issuing back-to-back read

operations to all banks.
• IDD5B: current consumption when issuing continuous burst

refresh operations.
Figure 6 shows how key DRAM current consumption values
(in log scale) have evolved across DRAM chips of di�erent
years (top) and capacities (bo�om). We use di�erent markers
to show data points from chips of di�erent DRAM standards.
We qualitatively observe that current consumption increased
exponentially up until approximately the year 2000, which
is about the time at which improvements in access timings
slowed down (as seen in Figure 3). A�er this point, di�erent
current consumption measurements diverged as IDD0 values
decreased while IDD4R and IDD5B stabilized or increased. We
explain this behavior by a change in the way DRAM chips were
refreshed as DRAM capacities continued to increase. Earlier
DRAM chips refreshed rows using individual row accesses (e.g.,
RAS-only refresh), which result in comparable behavior for
access and refresh operations. In contrast, newer DRAM chips
aggressively refresh multiple rows per refresh operation (e.g.,
burst refresh), which di�erentiates refresh operations from
normal row accesses [186, 363, 364].

We quantify the current consumption values by aggregating
the data points from Figure 6 by time and DRAM standard.
Figure 7 shows the minimum, median, and maximum values (in
log scale) across each 5-year period (top) and DRAM standard
(bo�om). �e data shows that the median IDD0/IDD4R/IDD5B
increased by 12.22/20.91/26.97% per year on average between
1970 and 2000 but decreased by 4.62/1.00/0.13% between 2000

13We omit tRCD and tRAS for the 1 Kib chips because they do not use a
row address strobe (RAS) signal.

and 201514 for an overall increase of 0.96/11.5/17.5% between
1970 and 2015.
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Figure 6: Evolution of key DRAM current consumption values
(shown in log scale) across years (top) and chip capacities (bot-
tom) separated by DRAM standard.

A.3. Relationship Between Timings and Currents
Finally, we examine the high-level relationship between the

timing parameter and current consumption values. We �nd
that the two are generally inversely related, which follows
from the general principle that faster DRAM chips (i.e., lower
timing parameters) require more power (i.e., increased current
consumption values). Figure 8 illustrates this relationship for
the four timing parameters studied in Section A.1 relative to
IDD4R (i.e., the current consumption of read operations).
A.4. DRAM Refresh Timing Trends

DRAM refresh is governed by two key timing parameters:
• tREFI (refresh interval): time between consecutive refresh

commands sent by the memory controller.
• tRFC: duration of a single refresh command.

14Similar to Section A.1, we omit the 2020 data point because the �rst-
generation DDR5 chips exhibit outlying data values (e.g., no data reported for
IDD5B in the datasheets).
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Figure 9 shows how tREFI (le� y-axis) and tRFC (right y-axis)
evolved across the DRAM chips in our study. We group chips
by storage capacity because DRAM refresh timings are closely
related to capacity: higher-capacity chips using the same tech-
nology require more time or more refresh operations to fully
refresh. �e error bars show the minimum and maximum
values observed across all chips for any given chip capacity.

We make three observations. First, tREFI is shorter for
higher-capacity DRAM chips (e.g., 62.5 µs for an asynchronous
1 Kib chip versus 3.9 µs for a 16 Gib DDR5 chip). �is is con-
sistent with the fact that higher-capacity chips require more
frequent refreshing. Second, tRFC �rst decreases with chip ca-
pacity (e.g., 900 ns for an asynchronous 1 Kib chip versus 54 ns
for a 32 Mib SDRAM chip) but then increases (e.g., to 350 ns
for a 16 Gib DDR4 chip). �is is because rapid improvements
in row access times (and therefore refresh timings) initially
outpaced the increase in storage capacity. However, starting
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Figure 8: Relationship between the four timing parameters
and IDD4R separated by DRAM standard.

around 512 Mib chip sizes, row access times improved much
more slowly (as observed in Section A.1) while storage capacity
continued to increase. �ird, the variation in tRFC across chips
of each capacity (illustrated using the error bars) decreased for
higher-capacity chips. �is is because higher-capacity chips
follow more recent DRAM standards (i.e., DDRn), which stan-
dardize DRAM auto refresh timings. In contrast, older DRAM
chips were simply refreshed as quickly as their rows could be
accessed (e.g., every tRC using RAS-only refresh).
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Figure 9: Evolution of tREFI (le� y-axis) and tRFC (right y-
axis) across DRAM chips of increasing storage capacity.

Figure 10 shows the refresh penalty [363, 364], which is de-
�ned as the ratio between tRFC and tREFI, for DRAM chips of
di�erent storage capacities. �e refresh penalty represents the
average time that a DRAM rank (or bank) is unavailable for ac-
cess due to refresh operations [185, 188, 363–365]. We observe
that the refresh penalty exhibits a similar trend to tRFC: the
refresh penalty worsens from a median of 1.04% for 1 Kib chips
to 2.05% for 16 Kib chips, then improves to 0.43% for 128 Mib
chips, and �nally worsens to a median of 4.48% (worst-case of
7.56% for DDR5 chips) for 16 Gib chips.
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Figure 10: Refresh penalty (computed as the ratio between
tRFC and tREFI) for DRAM chips of di�erent storage capac-
ities.

�is non-monotonic trend is due to the relative improve-
ments in DRAM access times and storage capacities: DRAM
capacities consistently improved while DRAM access times
did so only for older, lower-capacity chips (e.g., ≤ 128 Mib
chips). �is is consistent with trends observed in prior
work [43,77, 82, 181, 183, 187], which expect that future, higher-
capacity DRAM chips will spend an even larger proportion
of time refreshing unless the DRAM refresh algorithm and
techniques can be improved.
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B. Survey Data Sources
Table 5 itemizes the 58 DRAM datasheets used for our survey in Appendix A. For each datasheet, we show the DRAM chip

manufacturer, model number, DRAM standard, year, and capacity. Our full dataset is available online [35].

Year Manufacturer Model Number Datasheet Source DRAM Standard Capacity per Chip (Kib)
1970 Intel 1103 [S1] Asynchronous 1
1971 Mostek MK4006 [S2] Asynchronous 1
1973 Mostek MK4096 [S3] Asynchronous 4
1976 Mostek MK4027 [S4] PM 4
1976 Mostek MK4116P [S5] PM 16
1978 Fairchild F4116 [S6] PM 16
1979 Intel 2118 [S7] PM 16
1981 Mitsubishi M5K4164ANP [S8] PM 64
1982 Mostek MK4564 [S9] PM 64
1984 NTE NTE4164 [S10] PM 64
1984 Texas Instruments TMS4416 [S11] PM 64
1985 Mitsubishi M5M4256P [S12] PM 256
1987 Samsung KM41464A [S13] PM 256
1987 Texas Instruments TMS4464 [S14] PM 256
1989 Texas Instruments SMJ4464 [S15] PM 256
1990 Intel 21256 [S16] PM 256
1991 Mitsubishi M5M44100 [S17] FPM 4096
1993 Mitsubishi M5M44256B [S18] FPM 1024
1993 Mosel Vitelic V404J8 [S19] FPM 8192
1995 Siemens HYB511000BJ [S20] FPM 1024
1997 Hyundai HY5118164B [S21] EDO 16384
1997 Samsung KM48S2020CT [S22] SDRAM 16384
1998 Micron MT48LC4M4A1 [S23] SDRAM 16384
1998 Mosel Vitelic V53C808H [S24] EDO 8192
1998 Siemens HYB39S16400 [S25] SDRAM 16384
1999 Samsung K4S160822D [S26] SDRAM 16384
1999 Samsung K4S561632A [S27] SDRAM 262144
2000 Amic A416316B [S28] FPM 1024
2000 ISSI IS41LV32256 [S29] EDO 8192
2000 Samsung K4D623237A5 [S30] DDR 65536
2001 Alliance AS4C256K16E0 [S31] EDO 4096
2001 Alliance AS4C4M4FOQ [S32] FPM 16384
2001 ISSI IS41C4400X [S33] EDO 16384
2001 Micron MT46V2M32 [S34] DDR 65536
2001 Micron MT46V32M4 [S35] DDR 131072
2001 Mosel Vitelic V58C265164S [S36] DDR 65536
2001 TM Tech T224160B [S37] FPM 4096
2003 Micron MT46V64M4 [S38] DDR 262144
2003 Samsung K4S560432E [S39] SDRAM 262144
2005 Amic A43L0632 [S40] SDRAM 32768
2006 Elite M52S32321A [S41] SDRAM 32768
2006 ISSI IS42S81600B [S42] SDRAM 131072
2006 Sasmung K4T51043QC [S43] DDR2 524288
2007 Micron MT47H256M4 [S44] DDR2 1048576
2010 Samsung K4B4G0446A [S45] DDR3 4194304
2011 Hynix H5TQ4G43MFR [S46] DDR3 4194304
2011 Nanya NT5CB512M [S47] DDR3 2097152
2013 Samsung K4B4G0446A [S48] DDR3 4194304
2015 Micron MT40A2G [S49] DDR4 8388608
2016 Hynix H5AN4G4NAFR [S50] DDR4 4194304
2016 Samsung K4A8G165WC [S51] DDR4 8388608
2017 Hynix H5AN8G4NAFR [S52] DDR4 8388608
2018 Micron MT40A [S53] DDR4 16777216
2019 Hynix H5AN8G4NCJR [S54] DDR4 8388608
2019 Samsung K4AAG045WA [S55] DDR4 16777216
2020 Samsung K4AAG085WA [S56] DDR4 16777216
2021 Hynix HMCG66MEB [S57] DDR5 16777216
2021 Micron MT60B1G16 [S58] DDR5 16777216

Table 5: List of DRAM chip datasheets used in our DRAM trends survey.
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Survey Sources
[S1] Intel, “1103,” http://www.decadecounter.com/vta/pdf/Intel%20Memo

ry%20Design%20Handbook%20[1973-08].pdf, 1970.
[S2] Mostek, “MK4006,” https://usermanual.wiki/Pdf/1974MostekIntegrat

edCircuitGuide.1468557856/view, 1971.
[S3] Mostek, “MK4096,” https://console5.com/techwiki/images/0/04/MK

4096.pdf, 1973.
[S4] Mostek, “MK4027,” https://console5.com/techwiki/images/d/df/MK

4027.pdf, 1976.
[S5] Mostek, “MK4116P,” https://console5.com/techwiki/images/8/85/MK

4116.pdf, 1976.
[S6] Fairchild, “F4116,” http://minuszerodegrees.net/memory/4116/datas

heet F4116.pdf, 1978.
[S7] Intel, “2118,” https://drive.google.com/file/d/0B9rh9tVI0J5mNDk

wZGEwM2QtMzYzNC00YjQ4LTg4NjYtOGY2ZGRkMDMxYjFm/vi
ew?resourcekey=0-vyWj-- z6lp7BjZ-6epTng, 1979.

[S8] Mitsubishi, “M5K4164ANP,” https://datasheetspdf.com/pdf-�le/1110
696/Mitsubishi/M5K4164ANP-15/1, 1981.

[S9] Mostek, “MK4564,” http://www.minuszerodegrees.net/memory/4164
/datasheet MK4564-15 and MK4564-20.pdf, 1982.

[S10] NTE, “NTE4164,” http://www.farnell.com/datasheets/1905614.pdf,
1984.

[S11] Texas Instruments, “TMS4416,” http://pdf.datasheetcatalog.com/dat
asheets2/81/817426 1.pdf, 1984.

[S12] Mitsubishi, “M5M4256P,” http://bitsavers.trailing-edge.com/comp
onents/mitsubishi/ dataBooks/1985 Mitsubishi IC Memories.pdf,
1985.

[S13] Samsung, “KM41464A,” https://console5.com/techwiki/images/2/24/
KM41464A.pdf, 1987.

[S14] Texas Instruments, “TMS4464,” https://www.silicon-ark.co.uk/data
sheets/tms4464-datasheet-texas-instruments.pdf, 1987.

[S15] Texas Instruments, “SMJ4464,” http://65xx.unet.bz/ds/TMS4464.pdf,
1989.

[S16] Intel, “21256,” https://drive.google.com/file/d/0B9rh9tVI0J5mMjU2M
DJlNzItNWVkYy00NWM0L�mZjEtYTkyYjE5MTQxOGI2/view?r
esourcekey=0-Q0K9JcVvNlgRngkBon8vAw, 1990.

[S17] Mitsubishi, “M5M44100,” https://www.datasheetarchive.com/pdf/d
ownload.php?id=74e4e0a53cd85e765cc396504a798082be9621&typ
e=O&term=M5M44100, 1991.

[S18] Mitsubishi, “M5M44256B,” https://datasheetspdf.com/pdf-�le/111125
7/Mitsubishi/M5M44256BP-10/1, 1993.

[S19] Mosel Vitelic, “V404J8,” https://www.datasheetarchive.com/pdf/dow
nload.php?id=d5e7f23416e86a5950d91ea69b37003889d50e&type=
M&term=V404J8SU70, 1993.
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