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Abstract—Resistive Random-Access Memory (RRAM) is
well-suited to accelerate neural network (NN) workloads
as RRAM-based Processing-in-Memory (PIM) architectures
natively support highly-parallel multiply-accumulate (MAC)
operations that form the backbone of most NN workloads.
Unfortunately, NN workloads such as transformers require
support for non-MAC operations (e.g., softmax) that RRAM
cannot provide natively. Consequently, state-of-the-art works
either integrate additional digital logic circuits to support the
non-MAC operations or offload the non-MAC operations to
CPU/GPU, resulting in significant performance and energy
efficiency overheads.

In this work, we propose NEON, a novel compiler optimization
to enable the end-to-end execution of the NN workload in
RRAM. The key idea of NEON is to transform each non-
MAC operation into a lightweight yet highly-accurate neural
network. Utilizing neural networks to approximate the non-
MAC operations provides two advantages: 1) We can exploit the
key strength of RRAM, i.e., highly-parallel MAC operation, to
flexibly and efficiently execute non-MAC operations in memory.
2) We can simplify RRAM’s microarchitecture by eliminating the
additional digital logic circuits while reducing the data movement
overheads. Acceleration of the non-MAC operations in memory
enables NEON to achieve a 2.28x speedup compared to an
idealized digital logic-based RRAM. We analyze the trade-offs
associated with the transformation and demonstrate feasible use
cases for NEON across different substrates.

I. INTRODUCTION

Data movement between memory and computation units
inhibits the performance of memory-intensive workloads [1,
2]. Processing-in-Memory (PIM) offers a potential solution
to improve memory-intensive workloads’ performance and
energy efficiency by reducing the data movement [3–8]. Among
different PIM substrates, Resistive Random-Access Memory
(RRAM) is under active investigation for accelerating neural
network workloads [9–13]. RRAM’s subarrays are composed of
resistive crossbars that offer in-memory Multiply-ACcumulate
(MAC) computation capability [14–17]. Prior works utilize this
capability to propose RRAM-based neural network accelerators
and demonstrate orders of magnitude higher performance and
energy efficiency compared to CPU, GPU, and ASICs [18–20].

We survey prior proposals for RRAM-based neural network
inference accelerators [18–56] and observe a common design
pattern: resistive crossbars execute the MAC operations,
and additional computation structures execute the non-MAC
operations in the workload. Resistive crossbars cannot execute
the non-MAC operations in neural networks, for instance,
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Fig. 1: Generalizability vs. EDP–1 trade-off for different
methodologies to support non-MAC operations in RRAM
(OO: Operation Offloading, LUT: Lookup Tables, DLC: Digital
Logic Circuits, and MLS: Memristor-based Logic Synthesis).

softmax, sigmoid, and ReLu [57]. Consequently, additional
computation structures are integrated into the microarchitecture
to support the non-MAC operations. The computation structures
are implemented via different methodologies, including digital
logic circuits (DLC), lookup tables (LUT), memristor-based
logic synthesis (MLS), and operation offloading (OO). Each
methodology offers different trade-offs with respect to the
ability to support different operations (generalizability) and
performance (see Figure 1).

We observe a fundamental restriction of the common design
pattern followed by prior proposals: executing different neural
network workloads in a single RRAM microarchitecture is
difficult and inefficient as the system designer must integrate
multiple computation structures in the microarchitecture to
support different non-MAC operations in different workloads.
Further, integrating memory and high-performance logic in a
single chip presents manufacturing difficulties and might result
in lower yields [10, 58–61].

Our goal in this work is to enable efficient and generalizable
support for different non-MAC (nonlinear) operations in
RRAM-based neural network accelerators. To achieve this goal,
we propose NEON, (NonlinEar Operation emulatioN), a novel
hardware/software co-design methodology that leverages the
resistive crossbars to enable in-memory support for nonlinear
operations. NEON is based on three key insights: (1) resistive
crossbars offer in-memory MAC execution capability, (2) we
can leverage the subarray-level parallelism in RRAM to execute
multiple neural networks in parallel, and (3) neural networks
can accurately emulate different operations via the universal
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function approximation theorem [62–64]. NEON leverages
these insights to transform the unsupported nonlinear operations
into lightweight neural networks and execute them in RRAM.

Our methodology comprises three components: (1) an
automated transformation process for replacing the unsupported
operations in the execution graph with neural networks referred
to as NEON-Nets (Section IV-A), (2)a simplified RRAM
microarchitecture supporting MAC operations (via resistive
crossbars) and a single nonlinear operation implemented
via DLC. (Section IV-B), and (3) compiler and run-time
modifications to effectively integrate the NEON-Net and the
workload neural network, along with system optimizations.
These three components enable a single low-cost RRAM
microarchitecture to execute a wide range of neural networks
flexibly.

We demonstrate the generalizability of NEON by generating
and training NEON-Nets for multiple operations (Table III)
collected from our evaluation benchmark composed of diverse
neural networks (Section VII). Further, we explore the trade-
off space between the performance and accuracy of the
transformation process (Section VI-D1). We develop an
automated tool to implement the transformation process and
enable exploration of the NEON-Net design space. We will
open source the source code of the transformation tool and the
trained NEON-Nets in the final version of the manuscript.

This work makes the following contributions:
1) We propose a novel hardware/software co-design

methodology for supporting different nonlinear
operations in RRAM, NEON. NEON enables a single
RRAM microarchitecture to efficiently support
in-memory execution for different neural networks.

2) We explore the trade-off space between high-performance
and high-accuracy NEON-Nets. We will open-source the
tool’s code to explore the trade-off space and the trained
NEON-Nets in the final version of the manuscript.

3) NEON improves the end-to-end system performance by
2.28× and 1.4× over the DLC and LUT methodologies,
respectively. NEON incurs 1.42× higher and 1.17× lower
area utilization, 2.02× higher and 1.16× lower power
dissipation overheads compared to the DLC and LUT
methodologies, respectively.

II. BACKGROUND

We briefly introduce neural networks, followed by RRAM’s
organization and operation mechanism for accelerating neural
network inference. Next, we describe the universal function
approximation theorem and prove the generalizability of the
NEON methodology based on the theorem.
A. Neural Networks

Neural networks have emerged as an important class of
workloads for applications such as self-driving cars [65] (using
CNNs) and machine translation [66, 67] (using transformers).
The programmer defines the neural network’s structure before
compilation, represented as a Directed Acyclic Graph (DAG).
In the DAG, the vertices represent the operations, and the edges
represent the data flow between the operations. The compiler

can optimize the execution graph before deployment on the
target hardware [68, 69].

Convolutional Neural Networks (CNNs) are composed of
convolutional and fully connected layers (composed of MAC
operations). A convolutional layer comprises several kernels,
and the size of each layer is a function of the kernel size and
the number of input and output channels. The number of input
channels is equal to the depth of the input feature maps (e.g.,
three for an input layer operating on RGB images). The number
of output channels equals the depth of the output feature maps.
Convolutional layers are followed by fully-connected layers
with a softmax (nonlinear operation) at the output layer (Fig. 2).
Prior works exploit this observation to reduce the number of
operations supported in the hardware1 by offloading softmax
operations from the accelerator to the CPU [48, 49].
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Fig. 2: Execution graph for VGG-11 [70] (2014).

Modern neural networks. Figure 3 shows the execution graph
(DAG) for a modern neural network, the capsule network
CapsNet [71]. We observe squash, softmax, and sigmoid
operations in the middle of the critical path. It is difficult
to offload these operations to the CPU without significant
performance and energy consumption overheads stemming
from off-chip data movement and frequent synchronization
requirements [6, 72].
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Fig. 3: Execution graph for capsule network (2018). Nonlinear
operations not supported in RRAM are highlighted in red.

B. RRAM

Organization. Figure 4 shows an organizational overview of
a reference RRAM microarchitecture designed for accelerating
neural network inference. The high-level chip organization
comprises multiple memory banks [18]. Each memory
bank comprises multiple subarrays and sensing circuitry for
performing the memory read and write operations. The one-
transistor-one-resistor (1T1R) crossbar structure is used for the
subarray microarchitecture due to higher cell selectivity and
low leakage current [73–75]. The subarrays are connected via
H-tree interconnects [21]. Each subarray can independently

1Softmax is a common function used by almost all neural networks.
Interestingly, only one proposal [44] out of the 39 considered in our survey
reported in-memory execution capability for softmax.
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Fig. 4: A representative RRAM microarchitecture based on the
common design pattern: resistive crossbars execute the MAC
operations, and DLCs execute the non-MAC operations.

execute different operations, resulting in a PIM substrate with
massively parallel computation capabilities [76].
Operation Mechanism. We use Figure 4 to illustrate the
Processing-in-Memory (PIM) operation mechanism of the
resistive crossbars. The objective is to execute a vector-matrix
multiplication (VMM) between the vector A and the matrix W.
The matrix W is stored in memory (resistive crossbars), and
the vector A is input via the wordlines (WL). First, each value
Wi,j of the matrix W is encoded as the conductance G (inverse
of the cell’s resistance R, G = 1

R ) [77]. Next, the conductance
values Gi,j are written to the resistive crossbars based on device
characteristics [78–80]. This completes the initialization of the
crossbars before the execution (step 1 in Figure 4).

During execution, each input value in A, is converted to an
analog voltage value ai through the digital-to-analog converters
(DACs). The DACs drive the voltage on the respective wordline
(step 2 in Figure 4). Third, the voltage difference drives a
current Ii = ai ·Gi,j (inverse Ohm’s law; I = V/R). The current
across the bitline is accumulated to yield the result of the MAC
operation between the values stored in the cells on the bitline
and the input voltage values (step 3 in Figure 4). Fourth, the
accumulated current value is stored in the sample-and-hold
circuits (S&H) and digitized via analog-to-digital converters
(ADCs) (step 4 in Figure 4). Fifth, the digitized values are
forwarded to the additional computation structures for executing
the nonlinear operations (step 5 in Figure 4).
Mapping Neural Network Workloads on RRAM. To map
the workload’s execution graph (DAG) on the resistive
crossbars, each layer’s weight matrices are unrolled depth-
wise and represented as a vertical column, referred to as a
kernel. Every output channel in the layer is considered a single
kernel, as shown in Fig. 5. Kernels may be split or duplicated
across different RRAM subarrays [81, 82] based on the size
and the number of input and output channels. Kernel sizes
can significantly influence the utilization ratio for resistive
crossbars. As an illustrative example, kernel set N in Figure 5
utilizes only half of the available subarray capacity, resulting
in a 0.5 utilization ratio. High utilization ratios (maximum 1.0)
are desirable for higher energy efficiency [83].
Precision. To execute an n-bit fixed-point MAC operation
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Fig. 5: Mapping a CNN to the RRAM Subarray comprising
resistive crossbars and additional computation structures.

between the mapped weights and the input value Ai, 1-bit
DACs inject n bits successively over n input cycles [21]. We
use separate subarrays for mapping the positive and negative
weight values. Multi-bit weight values are distributed across
different columns due to the limited precision of a single
memristor cell [84, 85] (observe multiple columns for each
kernel in Fig. 5). The final results are summed across different
columns via Shift-and-Add (S&A) units.
C. Universal Function Approximation (UFA) theorem

The universal function approximation theorem (UFA) states
that a feed-forward neural network with at least one hidden
layer and a continuous2, bounded and non-constant activation
function can approximate a function boundary with arbitrary
precision [62, 87–91]. Prior work has used the UFA theorem
to approximate different operations in the C mathematical
library with neural networks [92], and replace code regions in
general-purpose workloads with neural networks [93].

III. TRADE-OFFS OF DIFFERENT METHODOLOGIES FOR
SUPPORTING OPERATIONS IN RRAM

This section describes the results of our survey of prior
proposals for accelerating neural networks in RRAM, followed
by the trade-offs associated with each methodology in the
survey.
Survey. We survey prior RRAM-based neural network
inference accelerators and categorize them based on the
methodology for supporting nonlinear operations. Table I
reports the survey results for each methodology: Digital Logic
Circuits (DLC), Lookup Tables (LUT), memristor-based logic
synthesis (MLS), offloading operations (OO) to the host, and
no discussion.

Prior work (Count) Methodology Nonlinear Operations

[18, 21–35] (16)
Digital Logic

Circuits (DLC) Sigmoid, ReLu

[19, 20, 36–42] (9) Lookup tables (LUT)
Sigmoid, ReLu,

LeakyReLu

[43–46] (4)
Memristor-based

Logic Synthesis (MLS)
Softmax, Sigmoid

tanh

[47, 48] (2)
Operation

Offloading (OO)
Squash, Softmax,
Sigmoid, ReLu

[49–56] (8)
Nonlinear Operation
support not discussed -

TABLE I: Nonlinear operation survey in RRAM

Next, we discuss the trade-offs for each methodology.
2ReLu is a notable exception. The function is not continuously differentiable,

but the gradient is defined for the discontinuity as a special case [86].
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A. Digital Logic Circuits (DLC)
16 out of 39 works in our survey support nonlinear

operations via the integration of DLC in the microarchitecture.
DLCs offer low latency and low area requirements but suffer
from two drawbacks: 1) Fixed-function circuits restrict the
microarchitecture to a limited set of nonlinear operations.
The operations must be known at design time and cannot
be changed after the chip is manufactured. Flexible logic
units (e.g., Chebyshev [94] and Taylor series-based function
approximation [95, 96]) offer marginally higher generalizability
but result in significantly worse performance (due to the use of
multiplications to calculate the output value) and a larger area
requirement compared to fixed-function circuits [35]. Notably,
only one prior work [35] in our survey uses flexible logic units.
2) Power dissipation is a key constraint for PIM substrates [97–
99]. Static power dissipation restricts the number of DLCs that
may be integrated in the microarchitecture. As an example,
supporting 1152-dimensional softmax in CapsNet requires
576× EXP and DIV units that incur enormous static power
overhead (19.76 W).
B. Lookup Tables (LUTs)

9 out of 39 works in our survey utilize LUTs to support
nonlinear operations. LUTs offer flexibility but suffer from
two drawbacks: 1) Large memory requirement restricts the
scalability of LUTs. Scalability is required to support parallel
nonlinear operations on the critical path. For instance, nonlinear
operations in CapsNet require 23040 LUTs that consume
2880 MB, 424× larger than the memory requirement of
CapsNet’s weights [100]. 2) The size of the RRAM subarray is
generally restricted (e.g., 128 or 256-sized crossbar) to improve
switching capability and minimize noise effects [75, 101, 102].
Consequently, large LUTs must be divided across several
subarrays, leading to hierarchical memory accesses that incur
significant latency penalties [103].
C. Memristor-Based Logic Synthesis (MLS)

MAGIC [104–107] proposes synthesizing primitive logic
operations such as XOR and NOR using memristor cells. 4 out
of 39 works leverage MLS to support nonlinear operations
in RRAM. MLS is unable to offer either performance or
generalizability due to the following three drawbacks: 1)
Memristors exhibit asymmetric read/write performance, and
write operations consume three orders of magnitude higher
energy [78, 108] than read operations. Each MAGIC-based
logic gate requires 2-3 memory write operations per input
that incurs significant energy consumption overheads. 2) The
system designer must combine primitive operations such as
NOR into complex digital operations. For instance, more than
20,000 memristor cells are needed to implement a simple 16-bit
multiplier unit that must be further combined into complex
operations such as EXP in softmax. 3) The synthesized logic is
not reconfigurable and must be fixed at design time, resulting
in a fixed-function microarchitecture.
D. Operation Offloading (OO)

Two prior works in our survey rely on the host for supporting
nonlinear operations via offloading. Theoretically, OO offers

generalizability as the host is assumed as a general-purpose
CPU. However, OO suffers from two drawbacks: 1) Frequent
communication and synchronization due to multiple calls for
nonlinear operations in the middle of the critical path (e.g.,
Figure 3) restrict the accelerator’s performance benefits. 2)
Excessive off-chip data movement restricts the accelerator’s
energy efficiency benefits. For instance, we evaluate the
data movement costs between RRAM and CPU using the
HyperTransport link used in a prior RRAM accelerator [21].
Data movement stemming from operation offloading requires
64.49× higher latency and 2.38× more energy than the latency
and energy required for executing the MAC component of the
target workload in RRAM.

IV. NEON METHODOLOGY

To enable efficient and generalizable support for nonlinear
operations in RRAM-based neural network accelerators, we
introduce NEON (NonlinEar Operation emulatioN). NEON is a
novel hardware/software co-design methodology to efficiently
support different nonlinear operations in RRAM. Next, we
describe the key insights, followed by an overview of NEON.
Further, we detail each component and its implementation:
the transformation process, RRAM microarchitecture, and the
compiler support. Finally, we discuss a key feature of NEON-
Nets, Operator Scalability.
Key Insights. We base our idea on three key insights:

(1) Resistive crossbars offer in-memory MAC execution
capabilities.

(2) We can leverage the subarray-level parallelism in RRAM
to execute multiple neural networks in parallel.

(3) Neural networks can accurately emulate nonlinear
operations via the universal function approximation
theorem [62–64].

Based on these insights, NEON generates and trains neural
networks to replace the unsupported nonlinear operations in the
target neural network’s execution graph. NEON leverages the
inherent strengths of RRAM subarrays (i.e., parallel and energy-
efficient MAC execution) to execute the nonlinear operations
within the subarray itself. For the rest of the paper, we refer to
the target neural network as the workload and the generated
neural networks as NEON-Nets. The workload is assumed to
be pre-trained and the training dataset is available during the
transformation.
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Fig. 6: (a) displays the transformation process, and (b) displays
the NEON microarchitecture.
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Overview. The methodology has three components: (1)
an automated transformation process for generating and
training NEON-Nets (Section IV-A), (2) a simplified RRAM
microarchitecture capable of executing the transformed
workload (Section IV-B), and (3) compiler and run-time
modifications to effectively integrate the NEON-Net and the
workload neural network. Figure 6 shows an overview of the
methodology. Next, we describe each component in detail.
A. Transformation Process
Motivation. The UFA theorem guarantees that a neural
network can approximate a function boundary with arbitrary
precision [62, 87, 88]. However, the theorem does not provide
any information about the structure of the neural network
or how to design it3. The programmer is responsible for
determining the NEON-Net’s structure. This is a non-trivial
problem and requires significant expertise in designing and
training neural networks [110]. To overcome this limitation
and make NEON generalizable across different nonlinear
operations, we develop an automated transformation process to
generate NEON-Nets using information from the workload’s
execution graph. Figure 6a illustrates the transformation process
comprising three steps:

1) Code segment delineation ( 1 in Fig. 6)
2) NEON-Net training dataset generation ( 2 in Fig. 6)
3) NEON-Net structure definition ( 3 in Fig. 6)
Next, we detail each step in the transformation process.

1) Code Segment Delineation
The first step is identifying the nonlinear operation’s code

segment for replacement with the NEON-Net. Neural network
frameworks such as PyTorch and TensorFlow [111, 112] are
widely used in industry and academia for programming and
compiling neural networks. These frameworks expose a stable
application programming interface (API) for operations used
as common blocks across different neural networks. The
operations are implemented via subroutines, e.g., softmax
subroutine in PyTorch [113]. We use the framework’s API to
identify the subroutine as the code segment for transformation
in the workload’s execution graph. We fix the granularity of
replacement to subroutines.
2) NEON-Net Training Dataset Generation

The compiler generates the NEON-Net’s training dataset
using the workload and the workload’s training dataset. To
generate the dataset, the compiler executes inference over the
workload using its training dataset and collects the input and
output parameters for the target subroutine (x and y in Listing
1). The input parameter values (x) serve as the input feature
values, and the output parameter values (y) serve as the ground
truth in the NEON-Net training dataset.
3) NEON-Net Structure Definition

We choose fully-connected (FC) neural networks [114] as
the base structure for generating NEON-Nets as FC layers are

3Similar limitations apply to other universality theorems, for instance, the
universality of Boolean logic [109]. Also referred to as an existence proof,
the theorem guarantees the existence of the solution but does not inform us
about how to find the solution.

composed of MAC operations that can be directly executed in
resistive crossbars. It is possible to consider alternate neural
network classes such as CNNs, RNNs, and autoencoders [115]
as base structures. However, each class requires co-designing
the microarchitecture to ensure end-to-end execution capability
and further exploration is left for future work.

A NEON-Net is a regression neural network composed
of at least three FC layers: input, hidden, and output. The
compiler uses information from the workload’s execution graph
to determine the input and output layer sizes. Using the softmax
subroutine in Listing 1 as an example, the function’s input (x)
and output (y) parameter’s dimensions (d) are used to define
the NEON-Net’s input and output layer sizes (d nodes in each
layer).

1def softmax(x): # x is a d-dimensional vector
2 e_x = np.exp(x) # pointwise exponentiation
3 y = e_x / e_x.sum() # pointwise division
4 return y # y is a d-dimensional vector

Listing 1: Softmax subroutine in Python programming language
(implementation based on the NumPy library [116])

As the input and output layer sizes are fixed, the number
and size of hidden layers primarily influence the NEON-Net’s
performance and accuracy. We measure the accuracy via Mean-
Square-Error (MSE) [117] metric (denoted by ε). We picked
MSE based on the highest end-to-end workload output accuracy
across different metrics, including cosine similarity, mean
absolute error, and MSE.

Determining the number and size of hidden layers. We
develop an algorithm to determine the number and size of
hidden layers based on the threshold accuracy indicated by
the system designer. The algorithm takes the initial NEON-
Net structure with input and output layers and iteratively adds
hidden layers until the threshold accuracy is achieved. We
constrain the maximum possible number of hidden layers to 100
to ensure that the training process completes in a finite period.
The number of nodes in the hidden layer is determined based
on the target RRAM microarchitecture’s crossbar size (e.g.,
128 or 256). This allows NEON to maximize the utilization
of the subarrays and encourages over-fitting (desirable as the
function boundary is deterministic [118]).

Algorithm 1: NEON-Net hidden layer structure
generation algorithm

1 Input: NEON-Net a single hidden layer, generated training dataset,
ε = 10–3, max_layers = 100 num_epochs=100, XBar_size=128;
initialization: Split dataset into train-validation, counter = 1;

2 while ‖f (x) – ε‖> 0 and counter < max_layers do
3 Train the NEON-Net for num_epochs using the training dataset;
4 Determine NEON-Net’s MSE (f (x)) on validation dataset;
5 if ‖f (x) – ε‖< 0 then
6 return trained NEON-Net structure and weights;
7 else
8 Add a hidden layer with XBar parameters;
9 Re-initialize the NEON-Net weights;

10 counter += 1;
11 end
12 end

5



B. Microarchitecture Design

NEON replaces the nonlinear operations with a NEON-
Net. The NEON-Net is composed of MACs and a single
nonlinear operation. The resistive crossbars directly support the
MAC operations. However, the microarchitecture must support
the nonlinear operation in the NEON-Nets. We integrate a
single fixed-function unit to support the NEON-Net’s nonlinear
operation. We pick DLC over LUT-based implementation
for the implementation as DLCs offer higher performance
compared to LUTs for implementing a single function.

Microarchitectural support for the NEON-Net’s nonlinear
operation ensures that the NEON-Nets themselves are not
recursively transformed. Each nonlinear operation in the
execution graph is transformed only once, as successive
approximations lead to an infinite recursion problem.
Determining the activation function for NEON-Net. The
UFA theorem places restrictions on which functions may be
used as activation functions. The function must exhibit the
following mathematical properties: nonlinear, continuous, and
finite output [119]. Based on these constraints, we evaluate
different functions as potential candidates: sigmoid, tanh, and
ReLu. We perform a grid search by training a fixed NEON-Net
with different activation functions: ReLu (MSE: 0.0774), tanh
(MSE: 0.0399), and sigmoid (MSE: 0.3036). We pick tanh as it
offers the lowest MSE compared to other activation functions.
We constrain all layers in the NEON-Net to use tanh as the
common activation function. It might be possible to improve
NEON-Net’s accuracy with more experiments. However, further
exploration is left for future work.
C. Compiler Support

We describe how the compiler identifies subroutines for
transformation, fine-tunes the post-transformation workload
to recover the accuracy loss, and a run-time optimization to
improve system stability.
Transformation Candidates. RRAM-supported subroutines
(e.g., convolution) are scheduled directly, and RRAM-
unsupported subroutines (e.g., softmax) are marked as
transformation candidates. Any kernel that is directly supported
on RRAM is not replaced. Each nonlinear operation is replaced
with a separate NEON-Net trained on the compilation system.
Fine-tuning the workload after transformation. The
transformation process leads to a slight accuracy loss in the
workload. We can recover the accuracy loss by fine-tuning
the workload as neural networks are inherently tolerant to
approximate execution [120, 121]. Fine-tuning is performed
after replacing all nonlinear operations with NEON-Nets.

Mechanism: We assume the workload is pre-trained before
the transformation, and the original training dataset is assumed
to be available for fine-tuning. (1) We freeze (mark the layer
as untrainable) all layers in the workload after replacing the
unsupported operations with NEON-Nets. (2) We unfreeze
(mark as trainable) one layer before and after the NEON-Net’s
position in the workload. The NEON-Net’s layers are marked
as frozen. (3) We resume training for the workload using
the original training dataset. (4) In the forward propagation

step, the unsupported subroutine’s output is derived from the
corresponding NEON-Net’s output for the input values. (5) In
the backward propagation step, the unsupported subroutine’s
output is derived from the original function implementation
(assumed as available in the compilation system, e.g., GPU).
Our fine-tuning mechanism is similar to training methods for
low-precision neural networks [122, 123]).
Run-time. At run-time, the call to the unsupported subroutine
is replaced with an equivalent function call to execute inference
on the NEON-Net (co-executed in a dedicated subarray along
with the workload). The function’s arguments are used as the
input values for inference, and the NEON-Net’s output replaces
the function’s return parameters on the call stack.

Next, we describe a run-time optimization to improve the
system’s stability.
Input domain and output range constraints. Mathematically,
a function may have an infinite input domain (–∞,∞) that
cannot be realized in practice. To overcome this problem,
DLCs and LUTs exploit mathematical properties of functions
such as the periodicity of trigonometric functions [124, 125]. To
overcome this problem for NEON, we constrain the function’s
input domain and output range by measuring the expected
distribution of values from the workload at run-time.

Neural networks often use batch normalization [126, 127]
after each layer to constrain the values to a normal distribution.
For example, Fig. 7a illustrates the input value distribution (x)
for softmax in CapsNet (trained over the CIFAR-10 dataset).
We observe a normal distribution with 99.918% values less
than 1.0 and 100% values less than 9.05. We leverage this
observation to constrain the NEON-Net’s input domain to
[–1.8,9.05]. Similarly, Fig. 7b illustrates softmax’s output value
distribution (y). We observe that 55% of the values are less than
0.1, and 100% are less than 0.87. Output values are constrained
to (0.0,0.87].

The compiler extracts the expected distribution of input and
output values from the NEON-Net training dataset. It parses
the input feature and ground truth values to determine the
minimum and maximum bounds for the input domain and
output range, respectively. At run-time, if any value outside
these constraints is encountered, it is rounded to the closest
value within the bounds ( 4 , and 5 in Fig. 6). This is achieved
by adding a simple rounding circuit (consisting of a comparator
and a multiplexer).
D. Operator Scalability

Digital logic typically accepts unary/binary input values, for
example, EXP (unary) and DIV (binary) operations. Increasing
the number of input values (operators) incurs a linear increase
in the area and power requirements for the digital logic circuits.
Similarly, scaling an N-input LUT incurs an exponential
increase in the memory requirements (2N). In contrast to
DLCs and LUTs, NEON-Nets offer a sublinear increase in
the Energy-Delay Product (EDP) when scaling the number of
operators. The number of input operators for a NEON-Net
equals the number of nodes in the input layer. The number of
input nodes is directly proportional to the number of wordline
activations in the crossbar. Consequently, increasing the number
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Neural Network Application Class Dataset Input size Output size Number of
Parameters Description Nonlinear

Operation (Dim)
Output

Accuracy loss
Fine-tuning

Time

CNN: VGG-16 Image Recognition ImageNet 224x224x3 1000x1 138 million VGG-16 reference model softmax (1000) -1.36% 19 min

GRU-based RNN Speech Recognition LibriSpeech
ASR corpus 128x1 128x1 594, 432 Input vector size = 128

Hidden-state size=128
sigmoid (1),

softmax (2048) 0.1% 6.5 min

Capsule Network
CapsNet

Occluded
Object Detection CIFAR-10 32x32x3 16x10 6.81 million 3x dynamic routing

iterations
squash (8), sigmoid (1)

softmax (1152) -1.8% 11 min

Transformer Neural Machine
Translation

WMT 2016
Translation Task 128xdmodel 128xdmodel 60 million

Self-Attention Heads = 8
Encoder/Decoder blocks = 6

dmodel=512, dff =2048

SQRT (1), sigmoid (1),
softmax (64) 0.87% 15 min

TABLE II: Benchmark neural networks
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(b)
Fig. 7: Softmax input and output value distributions were
obtained from CapsNet trained on the CIFAR10 dataset. Extreme
values are pruned for representation purposes.

of input operators increases the number of wordline activations,
resulting in sublinear scaling (until we exceed the capacity of
the subarray).

V. EXPERIMENTAL METHODOLOGY

This section describes the functions transformed by NEON,
benchmark workloads, NEON-Net training hyper-parameters,
and microarchitecture configurations.
A. Functions transformed by NEON

We evaluate the accuracy and performance of NEON-Nets
for different nonlinear operations in Table III. The operations
are selected based on our survey in Section III: softmax
(four versions based on different dimensions), square-root,
LeakyReLu, and squash. tanh is directly supported by the
DLC in the microarchitecture, and sigmoid (σ ) is indirectly
supported via the following equation: σ (z) = (1/2)(tanh(z/2)
+ 1). Any operation that is directly or indirectly supported
in the microarchitecture is not replaced. We restrict our
focus to continuous nonlinear operations as neural networks
use continuous functions for activation (the function must
be differentiable for using back-propagation to train the
network [128]).
B. Benchmark Workloads

We detail the different neural networks in our benchmark in
Table II, along with the corresponding unsupported nonlinear
operations transformed by NEON. We present the end-to-end
system performance results in Section VII.
C. Training Hyper-parameters
NEON-Net. We use PyTorch [112] as the programming
framework. The NEON-Nets are trained on a single GPU

(NVIDIA RTX 2070) using the following hyper-parameters:
loss function = Mean Square Error (MSE), loss optimization
algorithm = Adam [129], batch size = 1024, learning rate =
10–4, weight decay = 0.0001, training epochs = 100, ε = 10–4.
Data distributions and pre-processing. NEON-Net training
data is collected by executing inference for ten epochs using
the workload and the original training dataset. The dataset is
not normalized before training the NEON-Net to preserve the
input value distribution. We use ten epochs for fine-tuning the
workload after replacing all nonlinear operations with NEON-
Nets and report the fine-tuning time in Section VI-C.

D. Microarchitecture configurations

We consider the following microarchitecture configurations
for system evaluations:
Digital Logic Circuits (DLC). The DLC configuration
integrates fixed-function digital logic circuits necessary to
support different neural networks in the benchmarks. The
circuits’ area and power consumption values are taken from
the respective manuscripts [130–132].
Look-Up Tables (LUT). The LUT configuration integrates
lookup tables necessary to support the nonlinear operations in
different workloads. We use the resistive crossbars for storing
the LUTs.
NEON. The NEON configuration integrates a single digital
logic circuit to support the tanh operation. We set the threshold
MSE as 10–4 as it is sufficient for 16-bit precision.
MLS and OO. Due to fundamental drawbacks associated with
MLS and OO (orders of magnitude lower performance and
energy efficiency), we do not compare NEON against these
methodologies. However, we evaluate NEON’s performance
against specialized accelerators that use these methodologies
to support a particular workload in our benchmark
(Section VII-H).

Area and power consumption values for all components
are summarized in Table IV. All values have been scaled for
the 32 nm process node following the methodology in [133].
As prior work utilizes 16-bit fixed-point precision, all three
configurations (DLC, LUT, and NEON) also work at 16-bit
fixed-point precision (input, weight, and output values) for
an apples-to-apples comparison. Although resistive crossbars
support MUL operation, it requires significant modifications to
the wordline drivers [134]. Further, multiplying two dynamic
values via resistive crossbars requires writing one value to
the cells. Write operations incur three orders of magnitude
higher energy consumption penalty than read operations. To
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Nonlinear Operation Input Domain Output Range Accuracy (MSE) Hidden layers Training Time Area (mm2) Power (mW)

Softmax (64-dim) [-3.78, 7.5] [0.001, 0.87] 1.5×10–8 1 12.5 min 0.16 288.96
Softmax (1000-dim) [-4.08, 5.45] [0.01, 0.89] 2.62×10–9 1 11.99 min 1.66 3058.16
Softmax (1152-dim) [-1.08, 9.05] [0.01, 0.87] 2.5×10–5 2 15.57 min 1.99 3660.16
Softmax (2048-dim) [-0.08, 6.78] [0.01, 0.79] 3.4×10–5 2 18.7 min 3.45 6357.12
Square-root (SQRT) [-3.2, 4.5] [0.0, 2.12] 1.4×10–4 2 18.64 min 0.22 409.36
LeakyReLu (α = 0.1) [-7.8, 8.9] [-0.78, 8.9] 5.5×10–7 1 5.59 min 0.12 216.72

Squash (8-dim) [-1.5, 2.13] [-1.4, 2.02] 0.0 1 5.73 min 0.12 216.72

TABLE III: Different nonlinear operations with varying input parameter sizes replaced by NEON.

Component Specification Power Area
Memory

Subarray N/A 24.08 mW 13120 um2

Bank N/A 360.79 mW 484940 um2

Peripheral Circuits
Exponent [131] Power & Area Optimized 7.424 mW 5017 um2

Division/SQRT [132] Power & Area Optimized 26.88 mW 23869 um2

Multiplier [135] Power & Area Optimized 4.7 uW 236 um2

TABLE IV: Microarchitectural component power and area values

support multiplications between dynamic values efficiently, we
include an optimized multiplier [135] in all configurations.
Simulations are performed using a heavily modified version of
the NeuroSim toolchain [136].

VI. NEON-NET EVALUATIONS

This section reports evaluations for NEON-Net accuracy,
training time, workload’s end-to-end accuracy, fine-tuning time,
and the trade-off between NEON-Net’s size and accuracy.

A. Accuracy

Table III reports the accuracy of the NEON-Nets for different
nonlinear operations. To understand the impact of different
dimensions, we analyze two different NEON-Nets for softmax:
1000-dimensional from VGG and 1152-dimensional from
CapsNet. The 1000-dim softmax NEON-Net requires only
one hidden layer and obtains very high accuracy (MSE =
2.62× 10–9, threshold MSE = 10–4). In contrast, the 1152-
dim softmax requires two hidden layers, resulting in a slight
increase in area (13.98%) and power consumption (14.05%)
of the corresponding NEON-Net compared to the 1000-dim
softmax NEON-Net. The SQRT NEON-Net requires the longest
training time (18.64m), in contrast to LeakyReLu, with the
lowest training time (5.59m). We attribute the differences in
training time to the complexity of the respective operations.

B. NEON-Net Structure Generation Time

We report NEON-Net structure generation time for each
function in Table III. The average time across the benchmark
is 12.68 minutes. Figure 9 displays the training performance
curves for an individual NEON-Net (squash). The low training
time is attributed to the small size of the NEON-Nets. For
example, the squash NEON-Net’s structure has three layers
with 8, 128, and 8 parameters. We also report the training loss
and cosine similarity performance for the training process in
Figure 9. The performance quickly saturates, and the network
demonstrates 1.0 cosine similarity, indicating a very high
correlation between the network’s output and ground truth
vectors.

C. Workload’s End-to-End Accuracy
Table II indicates the end-to-end accuracy loss for different

workloads in the benchmark after fine-tuning. The average
accuracy loss across the benchmark is -0.54%, indicating higher
accuracy than the baseline. We attribute this observation to
the tolerance of neural networks to noise injection [121]. Fine-
tuning the network after replacement allows it to account for the
noise. The slight performance improvement is attributed to the
regularizing effects of noise injection during training [128, 137].
Fine-tuning time. The average amount of fine-tuning time
across the benchmark is 12.88 minutes (Table II). In contrast,
training the workloads from scratch requires a few hours on
average.

The squash NEON-Net obtains 0.0 MSE, implying perfect
emulation of the nonlinear operation. To test the impact of
0.0 MSE NEON-Net on the workload’s (CapsNet) end-to-end
accuracy, we replace only the squash operation in the workload
and skip the fine-tuning step. We observe a 0% accuracy loss
in the workload. We replace other nonlinear operations in
CapsNet (softmax) and observe a 0.99% end-to-end accuracy
loss. However, the workload recovers the accuracy loss after
fine-tuning and improves upon the baseline accuracy by 1.8%.
Accuracy across dimensions. We plot the value distributions
for each dimension in the squash NEON-Net and the ground
truth in Figure 8 to understand the impact of 0.0 MSE. We
observe that the distributions are identical across all eight
dimensions. This observation corroborates the 0% accuracy
loss observed in the CapsNet workload’s end-to-end accuracy
when replacing the squash operation with the corresponding
(perfect) NEON-Net.
Fine-tuning Time. The amount of time needed for fine-tuning
each workload is as follows: VGG (19 minutes), RNN (6.5
minutes), CapsNet (11 minutes), and transformer (15 minutes).
Fine-tuning requires significantly less time than training the
workload from scratch (requiring multiple hours or days).
D. Exploring NEON-Net’s Trade-off Space

We describe the trade-offs associated with NEON.
1) Trade-offs between NEON-Net’s Size and Accuracy

We evaluate the performance variation of NEON with an
increasing number of neurons per hidden layer. We evaluate
the 1000-dimensional softmax obtained from NEON with
one hidden layer composed of 128 nodes, with an MSE of
2.62x10–9. Increasing the number of neurons in each hidden
layer from 128 to 1000 results in a 0.97% increase in MSE.
Further increasing the number of hidden layers from 1 to 3
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Fig. 9: Squash NEON-Net training over 100 epochs completes
within 5.731 seconds. Training loss saturates by the 30th epoch
(complete in 1.719 seconds).

(each with 1000 nodes) results in a 0.08% increment in MSE.
Although the accuracy improvements are negligible, the NEON-
Net’s size has increased by 2.5×, commensurately increasing
the NEON-Net’s latency and energy consumption.
2) Discussion against Alternate Machine Learning Algorithms

Section IV describes the key insights behind NEON: high-
performance MAC support in RRAM substrates which helps
accelerate neural networks and the capability of neural networks
to act as universal function approximators. Using alternate
machine learning models such as Support Vector Machines
(SVM) [138] and Random Forest Regression (RFR) [139] is not
possible as the RRAM substrate cannot execute these models
natively. Although RRAM can accelerate linear regression [20],
such models are not considered viable universal function
approximators. Therefore, we believe neural networks are
a prime candidate for accelerating nonlinear operations in
RRAM.
3) Input data distribution shift

It is possible that the input data distribution shifts compared
to the original distribution over which the NEON-Net
was trained. The input domain and output range bounds
(Section IV-C) insulate NEON against this problem to a certain
extent. However, this is not a perfect solution, as a significant
shift can lead to accuracy loss. In such cases, the NEON-Net
must be retrained on the shifted input domain. Note that input
data distribution shift is a major problem for neural networks
in general, and there is ongoing research in this direction [140].

VII. SYSTEM EVALUATION

A. End-to-end evaluations
We evaluate the end-to-end speedup, power, energy,

and resource utilization for the three microarchitecture
configurations: DLC, LUT, and NEON.

B. Speedup
Figure 10a shows the speedup normalized to the DLC

configuration. NEON consistently provides speedup across
the entire benchmark, with a geomean value of 2.28× and
1.4× compared to DLC and LUT configurations, respectively.
The performance improvement is attributed to the abstraction of
long latency operations such as EXP and DIV (in softmax) with
MAC and tanh (in NEON-Net). For instance, VGG obtains a
modest speedup (1.06x) compared to the transformer (6.08x).
The difference is due to a higher fraction of unsupported
operations in transformers compared to VGG.
C. Area Utilization

Figure 10b compares the area utilization for all three
configurations normalized to the DLC configuration. NEON
increases the area utilization by 1.42× compared to the DLC
configuration. This increase is attributed to the significantly
larger resistive crossbars (0.026 mm2) compared to area-
optimized digital logic circuits (0.016 mm2 average area).
Area Utilization for LUTs. LUTs require 1.17× more area
compared to NEON. The difference is attributed to the value
retrieval mechanisms: the neural network stores approximate
values in the network’s weights (learned via back-propagation).
In contrast, LUTs store precise values that require more area.
D. Power Dissipation

Figure 10c shows the power dissipation normalized to
the DLC configuration. NEON requires 2.02× higher power
compared to the DLC configuration and 1.16× lower power
compared to the LUT configuration. The difference with respect
to DLC is attributed to the difference in power dissipation
of fixed-function circuits (10.28 mW on average) compared
to resistive crossbars (24.08 mW on average). The power
dissipation of resistive crossbars is dominated by the ADCs
(16 mW). Lowering ADC power can help improve NEON’s
power efficiency [141].
E. Energy Consumption

Figure 10d shows the energy consumption normalized to
the DLC configuration. Despite a reduction in the execution
time, higher area utilization and power dissipation lead to
higher energy consumption (15.33× higher than DLC and
1.4× lower than LUTs). Workloads with a higher fraction
of transformed operations (Transformer and CapsNet) report
significantly higher energy consumption.
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Fig. 10: End-to-end system evaluations across the benchmark neural networks. All values are normalized to the DLC configuration.

F. Operator Scaling
Figure 11 shows the energy-delay product (EDP) for all

configurations normalized to DLC as we scale the number
of input operators. We observe that digital logic offers lower
EDP for a single input operator compared to NEON-Net. This
observation is attributed to the higher cost of an entire subarray
dedicated to execute the NEON-Net. However, as we increase
the number of input operators, we observe that the EDP for
digital logic scales linearly due to the fixed cost increments
needed to support each new input value. In contrast, NEON-
Net yields sub-linear EDP scaling by using more rows in the
dedicated subarray. It is worth noting that NEON-Net shows
an increase in the slope of the curve from 128 to 256 inputs.
This observation is attributed to the addition of an additional
subarray upon exceeding the capacity of the first one.
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Fig. 11: EDP Scaling with the number of input operators. LUTs
are unable to scale without untenable EDP overheads.

G. NEON-Net Initialization Energy Consumption
NEON-Net subarrays must be initialized via additional

memory writes before deploying the system. We consider
the initialization cost of NEON-Nets and compare it to a
single inference call’s energy requirement for the corresponding
workload. NEON-Net initialization consumes on average 3.54%
of a single inference call’s energy consumption.
H. Comparison against Relevant Prior Work

ReTransformer [44] proposes a design for accelerating
transformers in RRAM. NEON achieves 29.56% speedup
over ReTransformer. Long et al.[35] propose a design for

accelerating RNNs in RRAM using flexible logic circuits.
NEON achieves 11.51× speedup and 14.58× energy reduction
over [35]. Zhang et al. [34] propose a CORDIC-based
microarchitecture supporting different nonlinear operations in
RRAM. NEON obtains 87.09× higher performance over [34].

VIII. RELATED WORK

This section discusses prior efforts to support nonlinear
operations in RRAM and neural network-based code
approximation.
A. RRAM for Accelerating Neural Networks

Few prior works propose RRAM substrates to support
different neural networks and machine learning workloads.
Ankit et al.[20] propose PUMA, which relies on lookup
tables for supporting non-native operations. We demonstrate
that LUTs are area-inefficient compared to NEON. Other
works [142, 143] look at designing RRAM-based neural
network accelerators in the context of spiking neural networks
(SNNs). However, SNNs require different hardware support
structures (spike generator and accumulator in contrast to DACs
and ADCs). Consequently, these works require significant
hardware customization (e.g., FPGA-like interconnects [23]).
NEON focuses on supporting different nonlinear operations in
ADC-based RRAM accelerators. Zhang et al. [34] propose an
RRAM substrate that supports different operations by relying
on the CORDIC [144] algorithm for transcendental functions.
We demonstrate that NEON is significantly faster than this
proposal (Section VII-H). Further, PUMA [20] corroborates
our hypothesis that a sufficiently accurate CORDIC unit is
infeasible in practice due to a large area requirement and high
implementation complexity. Huang et al. [47] propose a 3D-
RRAM microarchitecture for accelerating capsule networks.
However, their proposal offloads all nonlinear operations to
the host. In contrast, NEON supports the nonlinear operations
natively in RRAM.
B. Neural network-based code approximation

Esmaeilzadeh et al.[93] replace manually identified code
sections in general-purpose workloads with a human-trained
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neural network. In contrast, NEON automatically replaces
unsupported nonlinear operations in neural network workloads
to improve amenability on the target Processing-in-Memory
substrate (RRAM). NEON executes the replacement of non-
linear functions into neural networks automatically using a
reproducible process. We detail the differences as follows:
Automatically identifying code segments for
transformation. Prior work [145–147] relies on the
programmer to manually identify and annotate suitable code
regions for replacement. NEON overcomes this limitation by
leveraging information available at compile-time from the
workload’s execution graph.
Automated neural network definition and training. Prior
works [148, 149] rely on the programmer’s expertise in machine
learning to design the replacement neural network structure and
train it for high accuracy. NEON overcomes these limitations
by automating the network structure definition and training
process.

IX. EXTENSIONS AND FUTURE WORK

This section discusses the extensibility of NEON to different
non-volatile memory-based PIM substrates, future directions
for NEON, and manufacturing challenges for integrating DLC
in memory microarchitectures.

A. Applicability of NEON to Different Non-Volatile Memory-
based Processing-in-Memory Substrates

Emerging Non-Volatile Memory (NVM) technologies such
as Phase Change Memory (PCM) [150–157] and Spin-Transfer
Torque Magnetic RAM (STT-MRAM) [158, 159] have gained
attention as novel PIM substrates. These substrates perform
operations on data values stored in the memory subarrays, using
bitline-based computation mechanisms [12, 160, 161] often
organized similar to RRAM microarchitectures. Orthogonal
to the underlying NVM technology choice, NEON provides
a novel approach to support nonlinear operations in different
substrates designed for accelerating neural network workloads.
Although NEON is presented and evaluated in the context of
RRAM in this paper, we believe that it is easily extensible to
other substrates. Evaluating the feasibility and performance of
NEON for different substrates is left for future work.

B. Future Directions for NEON

Neural Architecture Search (NAS). NEON enables
generalizable support for nonlinear operations in RRAM while
opening a new research problem: how to find high-accuracy
and high-performance neural networks for emulating different
nonlinear operations? NAS [162–168] offers one potential
research direction towards this goal. NAS transforms the
network design process into a search space exploration using
a gradient method (e.g., back-propagation or reinforcement
learning) [169, 170]. A loss function guides the search based
on accuracy and performance metrics. NAS optimizes for two
orthogonal problems in parallel – designing the network’s
structure (including the size, number, and type of layer)
and optimizing its trainable parameters (weights) [171–174].
NAS-generated neural networks often significantly outperform

manually designed networks in accuracy and performance [175–
177]. However, considering the complexity of realizing NAS
in practice, this direction is left for future work.
C. Manufacturing Challenges for Integrating Digital Logic in

Memory Microarchitectures
The manufacturing processes for integrating a large

amount of digital logic on RRAM substrates remain an
open challenge [59, 178–182]. Memory microarchitectures are
optimized for density in contrast with performance-optimized
logic process [60, 61, 183]. Consequently, integrating general-
purpose cores or FPGA units in memory substrates presents
significant challenges. Further, programming such systems
requires complex instructions that are generally not a part
of memory ISAs [184].

X. CONCLUSION

We propose NEON, a novel hardware/software co-
design methodology to efficiently support different nonlinear
operations in RRAM. NEON enables RRAM to overcome
the fundamental restrictions on supported operations by
exploiting key strengths of the substrate. Further, it improves
the end-to-end system performance compared to the DLC
and LUT methodologies across different neural networks.
We hope this work opens a new research direction in
RRAM microarchitecture design to enable support for different
operations without additional computation structures.
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